电力侧信道分析中神经网络模型的可解释性探讨

Anupam Golder, Ashwin Bhat, A. Raychowdhury
{"title":"电力侧信道分析中神经网络模型的可解释性探讨","authors":"Anupam Golder, Ashwin Bhat, A. Raychowdhury","doi":"10.1145/3526241.3530346","DOIUrl":null,"url":null,"abstract":"In this work, we present a comprehensive analysis of explainability of Neural Network (NN) models in the context of power Side-Channel Analysis (SCA), to gain insight into which features or Points of Interest (PoI) contribute the most to the classification decision. Although many existing works claim state-of-the-art accuracy in recovering secret key from cryptographic implementations, it remains to be seen whether the models actually learn representations from the leakage points. In this work, we evaluated the reasoning behind the success of a NN model, by validating the relevance scores of features derived from the network to the ones identified by traditional statistical PoI selection methods. Thus, utilizing the explainability techniques as a standard validation technique for NN models is justified.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploration into the Explainability of Neural Network Models for Power Side-Channel Analysis\",\"authors\":\"Anupam Golder, Ashwin Bhat, A. Raychowdhury\",\"doi\":\"10.1145/3526241.3530346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a comprehensive analysis of explainability of Neural Network (NN) models in the context of power Side-Channel Analysis (SCA), to gain insight into which features or Points of Interest (PoI) contribute the most to the classification decision. Although many existing works claim state-of-the-art accuracy in recovering secret key from cryptographic implementations, it remains to be seen whether the models actually learn representations from the leakage points. In this work, we evaluated the reasoning behind the success of a NN model, by validating the relevance scores of features derived from the network to the ones identified by traditional statistical PoI selection methods. Thus, utilizing the explainability techniques as a standard validation technique for NN models is justified.\",\"PeriodicalId\":188228,\"journal\":{\"name\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Great Lakes Symposium on VLSI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526241.3530346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这项工作中,我们在功率侧信道分析(SCA)的背景下对神经网络(NN)模型的可解释性进行了全面分析,以深入了解哪些特征或兴趣点(PoI)对分类决策贡献最大。尽管许多现有的工作都声称在从加密实现中恢复密钥方面具有最先进的准确性,但这些模型是否真的从泄漏点中学习到表示还有待观察。在这项工作中,我们通过验证从网络中获得的特征与传统统计PoI选择方法识别的特征的相关性得分,评估了神经网络模型成功背后的原因。因此,利用可解释性技术作为神经网络模型的标准验证技术是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploration into the Explainability of Neural Network Models for Power Side-Channel Analysis
In this work, we present a comprehensive analysis of explainability of Neural Network (NN) models in the context of power Side-Channel Analysis (SCA), to gain insight into which features or Points of Interest (PoI) contribute the most to the classification decision. Although many existing works claim state-of-the-art accuracy in recovering secret key from cryptographic implementations, it remains to be seen whether the models actually learn representations from the leakage points. In this work, we evaluated the reasoning behind the success of a NN model, by validating the relevance scores of features derived from the network to the ones identified by traditional statistical PoI selection methods. Thus, utilizing the explainability techniques as a standard validation technique for NN models is justified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Power Consumption using Approximate Encoding for CNN Accelerators at the Edge Design and Evaluation of In-Exact Compressor based Approximate Multipliers MOCCA: A Process Variation Tolerant Systolic DNN Accelerator using CNFETs in Monolithic 3D ENTANGLE: An Enhanced Logic-locking Technique for Thwarting SAT and Structural Attacks Two 0.8 V, Highly Reliable RHBD 10T and 12T SRAM Cells for Aerospace Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1