嵌入式多处理器系统中一种高效的非对称分布式锁

J. Rutgers, M. Bekooij, G. Smit
{"title":"嵌入式多处理器系统中一种高效的非对称分布式锁","authors":"J. Rutgers, M. Bekooij, G. Smit","doi":"10.1109/SAMOS.2012.6404172","DOIUrl":null,"url":null,"abstract":"Efficient synchronization is a key concern in an embedded many-core system-on-chip (SoC). The use of atomic read-modify-write instructions combined with cache coherency as synchronization primitive is not always an option for shared-memory SoCs due to the lack of suitable IP. Furthermore, there are doubts about the scalability of hardware cache coherency protocols. Existing distributed locks for NUMA multiprocessor systems do not rely on cache coherency and are more scalable, but exchange many messages per lock. This paper introduces an asymmetric distributed lock algorithm for shared-memory embedded multiprocessor systems without hardware cache coherency. Messages are exchanged via a low-cost inter-processor communication ring in combination with a small local memory per processor. Typically, a mutex is used over and over again by the same process, which is exploited by our algorithm. As a result, the number of messages exchanged per lock is significantly reduced. Experiments with our 32-core system show that when having locks in SDRAM, 35% of the memory traffic is lock related. In comparison, our solution eliminates all of this traffic and reduces the execution time by up to 89%.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An efficient asymmetric distributed lock for embedded multiprocessor systems\",\"authors\":\"J. Rutgers, M. Bekooij, G. Smit\",\"doi\":\"10.1109/SAMOS.2012.6404172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient synchronization is a key concern in an embedded many-core system-on-chip (SoC). The use of atomic read-modify-write instructions combined with cache coherency as synchronization primitive is not always an option for shared-memory SoCs due to the lack of suitable IP. Furthermore, there are doubts about the scalability of hardware cache coherency protocols. Existing distributed locks for NUMA multiprocessor systems do not rely on cache coherency and are more scalable, but exchange many messages per lock. This paper introduces an asymmetric distributed lock algorithm for shared-memory embedded multiprocessor systems without hardware cache coherency. Messages are exchanged via a low-cost inter-processor communication ring in combination with a small local memory per processor. Typically, a mutex is used over and over again by the same process, which is exploited by our algorithm. As a result, the number of messages exchanged per lock is significantly reduced. Experiments with our 32-core system show that when having locks in SDRAM, 35% of the memory traffic is lock related. In comparison, our solution eliminates all of this traffic and reduces the execution time by up to 89%.\",\"PeriodicalId\":130275,\"journal\":{\"name\":\"2012 International Conference on Embedded Computer Systems (SAMOS)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Embedded Computer Systems (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2012.6404172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

高效同步是嵌入式多核片上系统(SoC)的关键问题。由于缺乏合适的IP,对于共享内存soc来说,使用原子读-修改-写指令和缓存一致性作为同步原语并不总是一种选择。此外,对硬件缓存一致性协议的可扩展性也存在疑问。用于NUMA多处理器系统的现有分布式锁不依赖于缓存一致性,并且具有更高的可扩展性,但是每个锁交换许多消息。针对无硬件缓存一致性的共享内存嵌入式多处理器系统,提出了一种非对称分布式锁算法。消息通过低成本的处理器间通信环交换,并结合每个处理器的小本地内存。通常,一个互斥锁被同一个进程反复使用,我们的算法利用了这一点。因此,每个锁交换的消息数量大大减少。在我们的32核系统上进行的实验表明,当在SDRAM中使用锁时,35%的内存流量与锁相关。相比之下,我们的解决方案消除了所有这些流量,并将执行时间减少了89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient asymmetric distributed lock for embedded multiprocessor systems
Efficient synchronization is a key concern in an embedded many-core system-on-chip (SoC). The use of atomic read-modify-write instructions combined with cache coherency as synchronization primitive is not always an option for shared-memory SoCs due to the lack of suitable IP. Furthermore, there are doubts about the scalability of hardware cache coherency protocols. Existing distributed locks for NUMA multiprocessor systems do not rely on cache coherency and are more scalable, but exchange many messages per lock. This paper introduces an asymmetric distributed lock algorithm for shared-memory embedded multiprocessor systems without hardware cache coherency. Messages are exchanged via a low-cost inter-processor communication ring in combination with a small local memory per processor. Typically, a mutex is used over and over again by the same process, which is exploited by our algorithm. As a result, the number of messages exchanged per lock is significantly reduced. Experiments with our 32-core system show that when having locks in SDRAM, 35% of the memory traffic is lock related. In comparison, our solution eliminates all of this traffic and reduces the execution time by up to 89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instrumentation techniques for cyber-physical systems using the targeted dataflow interchange format Efficient system design using the Statistical Analysis of Architectural Bottlenecks methodology Virtual prototyping for efficient multi-core ECU development of driver assistance systems Energy efficient stream-based configurable architecture for embedded platforms Predictable dynamic embedded data processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1