基于Cat群优化的数据聚类

Yongguo Liu, Yi-Dong Shen
{"title":"基于Cat群优化的数据聚类","authors":"Yongguo Liu, Yi-Dong Shen","doi":"10.4156/JCIT.VOL5.ISSUE8.2","DOIUrl":null,"url":null,"abstract":"In this article, a recent metaheuristic method, cat swarm optimization, is introduced to find the proper clustering of data sets. Two clustering approaches based on cat swarm optimization called Cat Swarm Optimization Clustering (CSOC) and K-harmonic means Cat Swarm Optimization Clustering (KCSOC) are proposed. In the proposed methods, seeking mode and tracing mode are adopted to exploit and explore the solution space. In addition, K-Harmonic Means (KHM) operation is designed to refine the population and accelerate the convergence of the clustering algorithm. Experimental results on six real life data sets are given to illustrate the effectiveness of the proposed algorithms.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Data Clustering with Cat Swarm Optimization\",\"authors\":\"Yongguo Liu, Yi-Dong Shen\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a recent metaheuristic method, cat swarm optimization, is introduced to find the proper clustering of data sets. Two clustering approaches based on cat swarm optimization called Cat Swarm Optimization Clustering (CSOC) and K-harmonic means Cat Swarm Optimization Clustering (KCSOC) are proposed. In the proposed methods, seeking mode and tracing mode are adopted to exploit and explore the solution space. In addition, K-Harmonic Means (KHM) operation is designed to refine the population and accelerate the convergence of the clustering algorithm. Experimental results on six real life data sets are given to illustrate the effectiveness of the proposed algorithms.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了一种新的元启发式方法——cat群优化,用于寻找数据集的合适聚类。提出了基于猫群优化的两种聚类方法:猫群优化聚类(CSOC)和k -调和均值猫群优化聚类(KCSOC)。在该方法中,采用寻址模式和跟踪模式对解空间进行挖掘和探索。此外,设计了k调和均值(K-Harmonic Means, KHM)运算,以细化种群,加快聚类算法的收敛速度。在六个实际数据集上的实验结果说明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Clustering with Cat Swarm Optimization
In this article, a recent metaheuristic method, cat swarm optimization, is introduced to find the proper clustering of data sets. Two clustering approaches based on cat swarm optimization called Cat Swarm Optimization Clustering (CSOC) and K-harmonic means Cat Swarm Optimization Clustering (KCSOC) are proposed. In the proposed methods, seeking mode and tracing mode are adopted to exploit and explore the solution space. In addition, K-Harmonic Means (KHM) operation is designed to refine the population and accelerate the convergence of the clustering algorithm. Experimental results on six real life data sets are given to illustrate the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1