基于噪声自动编码器的RISAT-1 SAR图像散斑抑制

Trupti G. Kamod, P. Rege, S. Kulkarni
{"title":"基于噪声自动编码器的RISAT-1 SAR图像散斑抑制","authors":"Trupti G. Kamod, P. Rege, S. Kulkarni","doi":"10.1109/SPIN52536.2021.9566055","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) images can pass through cloud cover, dry particles, and haze except for heavy rainfall. Therefore, they are available in all climates, all the time. However, the SAR images are corrupted by speckle noise generated by coherent processing of SAR signal. In this paper, the denoise auto-encoder model is proposed to reduce the speckle noise in SAR images, and the performance of the auto-encoder model is compared with different spatial-domain adaptive filters viz. Lee, Frost, Enhanced Lee, Enhanced Frost. The performance of the proposed denoising encoder is assessed using visual analysis, and quantitative evaluation using metrics, viz. equivalent number of looks (ENL), speckle suppression index (SSI) and speckle suppression and mean preservation index (SMPI). The evaluation of the denoise auto-encoder reveals that its performance is better than spatial- domain adaptive filters.","PeriodicalId":343177,"journal":{"name":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Denoise Auto-Encoder Based Speckle Reduction for RISAT-1 SAR Imagery\",\"authors\":\"Trupti G. Kamod, P. Rege, S. Kulkarni\",\"doi\":\"10.1109/SPIN52536.2021.9566055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) images can pass through cloud cover, dry particles, and haze except for heavy rainfall. Therefore, they are available in all climates, all the time. However, the SAR images are corrupted by speckle noise generated by coherent processing of SAR signal. In this paper, the denoise auto-encoder model is proposed to reduce the speckle noise in SAR images, and the performance of the auto-encoder model is compared with different spatial-domain adaptive filters viz. Lee, Frost, Enhanced Lee, Enhanced Frost. The performance of the proposed denoising encoder is assessed using visual analysis, and quantitative evaluation using metrics, viz. equivalent number of looks (ENL), speckle suppression index (SSI) and speckle suppression and mean preservation index (SMPI). The evaluation of the denoise auto-encoder reveals that its performance is better than spatial- domain adaptive filters.\",\"PeriodicalId\":343177,\"journal\":{\"name\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN52536.2021.9566055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN52536.2021.9566055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成孔径雷达(SAR)图像可以穿过云层、干燥颗粒和雾霾,但大雨除外。因此,它们在任何气候、任何时间都适用。然而,对SAR信号进行相干处理时产生的散斑噪声会对SAR图像造成破坏。为了降低SAR图像中的散斑噪声,本文提出了一种降噪自编码器模型,并比较了不同空域自适应滤波器(Lee、Frost、Enhanced Lee、Enhanced Frost)的性能。采用视觉分析方法对所提出的去噪编码器的性能进行了评估,并使用等效外观数(ENL)、散斑抑制指数(SSI)和散斑抑制和平均保存指数(SMPI)等指标进行了定量评估。对噪声自编码器的性能评价表明,其性能优于空间域自适应滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoise Auto-Encoder Based Speckle Reduction for RISAT-1 SAR Imagery
Synthetic aperture radar (SAR) images can pass through cloud cover, dry particles, and haze except for heavy rainfall. Therefore, they are available in all climates, all the time. However, the SAR images are corrupted by speckle noise generated by coherent processing of SAR signal. In this paper, the denoise auto-encoder model is proposed to reduce the speckle noise in SAR images, and the performance of the auto-encoder model is compared with different spatial-domain adaptive filters viz. Lee, Frost, Enhanced Lee, Enhanced Frost. The performance of the proposed denoising encoder is assessed using visual analysis, and quantitative evaluation using metrics, viz. equivalent number of looks (ENL), speckle suppression index (SSI) and speckle suppression and mean preservation index (SMPI). The evaluation of the denoise auto-encoder reveals that its performance is better than spatial- domain adaptive filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Compensation Circuit for ISFET based pH Sensor Knowledge Adaptation for Cross-Domain Opinion Mining Voltage Profile Enhancement of a 33 Bus System Integrated with Renewable Energy Sources and Electric Vehicle Power Quality Enhancement of Cascaded H Bridge 5 Level and 7 Level Inverters PIC simulation study of Beam Tunnel for W- Band high power Gyrotron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1