ARMAsel作为一种随机数据语言

P. Broersen
{"title":"ARMAsel作为一种随机数据语言","authors":"P. Broersen","doi":"10.1109/IMTC.2005.1604408","DOIUrl":null,"url":null,"abstract":"Two different high order time series models represent a parametric spectral estimate that is exactly equal to the non-parametric periodogram. Hence, the raw material for parametric and for non-parametric spectral and autocorrelation analysis is the same. In non-parametric estimation, the periodogram is smoothed with a window to diminish or remove insignificant details. That gives a distortion to the details of all modified non-parametric estimates, defined by the shape and by the width of the window. In contrast, parametric time series models can eliminate higher order details without distorting the remaining lower order details. First, many candidate models are estimated, with different type and order. From those candidates, a single time series model is selected automatically, without user interaction. The selection of model order and model type with the ARMAsel algorithm lets the data speak and decide. Interesting alternative models are suggested by the estimated accuracies of all other candidates, in what can be called the language of the data","PeriodicalId":244878,"journal":{"name":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ARMAsel as a Language for Random Data\",\"authors\":\"P. Broersen\",\"doi\":\"10.1109/IMTC.2005.1604408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two different high order time series models represent a parametric spectral estimate that is exactly equal to the non-parametric periodogram. Hence, the raw material for parametric and for non-parametric spectral and autocorrelation analysis is the same. In non-parametric estimation, the periodogram is smoothed with a window to diminish or remove insignificant details. That gives a distortion to the details of all modified non-parametric estimates, defined by the shape and by the width of the window. In contrast, parametric time series models can eliminate higher order details without distorting the remaining lower order details. First, many candidate models are estimated, with different type and order. From those candidates, a single time series model is selected automatically, without user interaction. The selection of model order and model type with the ARMAsel algorithm lets the data speak and decide. Interesting alternative models are suggested by the estimated accuracies of all other candidates, in what can be called the language of the data\",\"PeriodicalId\":244878,\"journal\":{\"name\":\"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2005.1604408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2005.1604408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

两个不同的高阶时间序列模型表示与非参数周期图完全相等的参数谱估计。因此,参数谱和非参数谱及自相关分析的原材料是相同的。在非参数估计中,周期图用窗口平滑以减少或去除不重要的细节。这给所有修改的非参数估计的细节带来了失真,这些估计由窗口的形状和宽度定义。相比之下,参数时间序列模型可以消除高阶细节而不会扭曲剩余的低阶细节。首先,对不同类型和顺序的候选模型进行估计。从这些候选模型中,自动选择单个时间序列模型,而无需用户交互。用ARMAsel算法选择模型顺序和模型类型,让数据说话和决定。所有其他候选模型的估计精度提出了有趣的替代模型,这可以称为数据的语言
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARMAsel as a Language for Random Data
Two different high order time series models represent a parametric spectral estimate that is exactly equal to the non-parametric periodogram. Hence, the raw material for parametric and for non-parametric spectral and autocorrelation analysis is the same. In non-parametric estimation, the periodogram is smoothed with a window to diminish or remove insignificant details. That gives a distortion to the details of all modified non-parametric estimates, defined by the shape and by the width of the window. In contrast, parametric time series models can eliminate higher order details without distorting the remaining lower order details. First, many candidate models are estimated, with different type and order. From those candidates, a single time series model is selected automatically, without user interaction. The selection of model order and model type with the ARMAsel algorithm lets the data speak and decide. Interesting alternative models are suggested by the estimated accuracies of all other candidates, in what can be called the language of the data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low-Cost Real-Time Virtual Spectrum Analyzer Determination of thickness and dielectric constant of coatings from capacitance measurements Noninvasive Measurement of Blood Glucose Based on Optical Sensing and Internal Standard Method A Technique for Image Denoising Based on Adaptive Piecewise Linear Filters and Automatic Parameter Tuning Error Recovery Service for the IEEE 802.11B Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1