模糊集优化的数据库驱动模因算法

K. McCarty, M. Manic
{"title":"模糊集优化的数据库驱动模因算法","authors":"K. McCarty, M. Manic","doi":"10.1109/HSI.2014.6860443","DOIUrl":null,"url":null,"abstract":"Fuzzy logic provides a natural and precise way for humans to define and interact with systems. Optimizing a fuzzy inference system, however, presents some special challenges for the developer because of the imprecision that is inherent to fuzzy sets. This paper expands upon an earlier development of a fuzzy framework, adding components for dynamic self-optimization. What makes this approach unique is the use of relational database as a computational engine for the memetic algorithm and fitness function. The new architecture combines the power of fuzzy logic with the special properties of a relational database to create an efficient, flexible and self-optimizing combination. Database objects provide the fitness function, population sampling, gene crossover and mutation components allowing for superior batch processing and data mining potential. Results show the framework is able to improve the performance of a working configuration as well as fix a non-working configuration.","PeriodicalId":448379,"journal":{"name":"2014 7th International Conference on Human System Interactions (HSI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A database driven memetic algorithm for fuzzy set optimization\",\"authors\":\"K. McCarty, M. Manic\",\"doi\":\"10.1109/HSI.2014.6860443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy logic provides a natural and precise way for humans to define and interact with systems. Optimizing a fuzzy inference system, however, presents some special challenges for the developer because of the imprecision that is inherent to fuzzy sets. This paper expands upon an earlier development of a fuzzy framework, adding components for dynamic self-optimization. What makes this approach unique is the use of relational database as a computational engine for the memetic algorithm and fitness function. The new architecture combines the power of fuzzy logic with the special properties of a relational database to create an efficient, flexible and self-optimizing combination. Database objects provide the fitness function, population sampling, gene crossover and mutation components allowing for superior batch processing and data mining potential. Results show the framework is able to improve the performance of a working configuration as well as fix a non-working configuration.\",\"PeriodicalId\":448379,\"journal\":{\"name\":\"2014 7th International Conference on Human System Interactions (HSI)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th International Conference on Human System Interactions (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI.2014.6860443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2014.6860443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模糊逻辑为人类定义系统和与系统交互提供了一种自然而精确的方式。然而,由于模糊集固有的不精确性,优化模糊推理系统对开发人员提出了一些特殊的挑战。本文扩展了早期模糊框架的开发,增加了动态自优化组件。这种方法的独特之处在于使用关系数据库作为模因算法和适应度函数的计算引擎。新的体系结构将模糊逻辑的力量与关系数据库的特殊属性相结合,创建了一个高效、灵活和自优化的组合。数据库对象提供了适应度函数、种群采样、基因交叉和突变组件,从而实现了卓越的批处理和数据挖掘潜力。结果表明,该框架能够提高工作配置的性能,并修复非工作配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A database driven memetic algorithm for fuzzy set optimization
Fuzzy logic provides a natural and precise way for humans to define and interact with systems. Optimizing a fuzzy inference system, however, presents some special challenges for the developer because of the imprecision that is inherent to fuzzy sets. This paper expands upon an earlier development of a fuzzy framework, adding components for dynamic self-optimization. What makes this approach unique is the use of relational database as a computational engine for the memetic algorithm and fitness function. The new architecture combines the power of fuzzy logic with the special properties of a relational database to create an efficient, flexible and self-optimizing combination. Database objects provide the fitness function, population sampling, gene crossover and mutation components allowing for superior batch processing and data mining potential. Results show the framework is able to improve the performance of a working configuration as well as fix a non-working configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output events for human-system interaction modeling Translation UML diagrams into Verilog Human-computer interactions in speech therapy using a blowing interface Interaction with medical data using QR-codes Hardware reduction for RAM-based Moore FSMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1