稀疏自编码器在手写数字识别中的应用

Kaihong Zhou, Xinxin Qiao, Jingkai Shi
{"title":"稀疏自编码器在手写数字识别中的应用","authors":"Kaihong Zhou, Xinxin Qiao, Jingkai Shi","doi":"10.1145/3305275.3305277","DOIUrl":null,"url":null,"abstract":"Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The deep neural network is formed by stacking multiple sparse auto-encoders, training the data in an unsupervised manner, initializing the weights of the network, and then fine-tuning the network with a reciprocal propagation algorithm. Finally, the images is classified using the soft-max classifier. Sparse reduces the number of dimensions effectively, and the back propagation algorithm is optimized on the cost function, leading to the accuracy rate has been greatly improved, and completing the classification of handwritten numbers.","PeriodicalId":370976,"journal":{"name":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Sparse auto-encoder in Handwritten Digit Recognition\",\"authors\":\"Kaihong Zhou, Xinxin Qiao, Jingkai Shi\",\"doi\":\"10.1145/3305275.3305277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The deep neural network is formed by stacking multiple sparse auto-encoders, training the data in an unsupervised manner, initializing the weights of the network, and then fine-tuning the network with a reciprocal propagation algorithm. Finally, the images is classified using the soft-max classifier. Sparse reduces the number of dimensions effectively, and the back propagation algorithm is optimized on the cost function, leading to the accuracy rate has been greatly improved, and completing the classification of handwritten numbers.\",\"PeriodicalId\":370976,\"journal\":{\"name\":\"Proceedings of the International Symposium on Big Data and Artificial Intelligence\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Symposium on Big Data and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3305275.3305277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Big Data and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3305275.3305277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习和非监督学习方法在图像特征提取中有着广泛的应用。本文利用MATLAB训练深度神经网络对手写数字图片进行分类。深度神经网络是通过堆叠多个稀疏自编码器,以无监督的方式训练数据,初始化网络的权值,然后使用互反传播算法对网络进行微调而形成的。最后,使用soft-max分类器对图像进行分类。稀疏有效地减少了维数,并对代价函数进行了反向传播算法的优化,使得准确率有了很大的提高,完成了手写体数字的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Sparse auto-encoder in Handwritten Digit Recognition
Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The deep neural network is formed by stacking multiple sparse auto-encoders, training the data in an unsupervised manner, initializing the weights of the network, and then fine-tuning the network with a reciprocal propagation algorithm. Finally, the images is classified using the soft-max classifier. Sparse reduces the number of dimensions effectively, and the back propagation algorithm is optimized on the cost function, leading to the accuracy rate has been greatly improved, and completing the classification of handwritten numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Simulation of Four-DOF Handling Robot under Different Driving Modes Proceedings of the International Symposium on Big Data and Artificial Intelligence Design of Smart Baby Carriage Based on MCU Application of Internet of Things Technology in Agricultural Production Considerations of the Paradigms of Urban Design Teaching Application about Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1