Ruei-Hong Peng, Tsu-Wei Tsai, Ke-Horng Chen, Zhih Han Tai, Yi Hsuan Cheng, Chi Chung Tsai, Hsin-Yu Luo, Shih-Ming Wang, Long-Der Chen, Cheng-Chen Yang, Jui-Lung Chen
{"title":"具有连续内置电阻检测器(CBIRD)和模拟乘除单元(AMDU)的锂离子电池快速充电开关充电器","authors":"Ruei-Hong Peng, Tsu-Wei Tsai, Ke-Horng Chen, Zhih Han Tai, Yi Hsuan Cheng, Chi Chung Tsai, Hsin-Yu Luo, Shih-Ming Wang, Long-Der Chen, Cheng-Chen Yang, Jui-Lung Chen","doi":"10.1109/ESSCIRC.2013.6649096","DOIUrl":null,"url":null,"abstract":"Proposed continuously built-in resistor detector (CBIRD) monitors the built-in resistance (BIR) of the Li-Ion batteries for achieving fast charging process. Owing to the detection of the battery built-in resistance in real-time, the transition from the constant-current (CC) mode to the constant-voltage (CV) mode can be postponed to have large energy storing in the battery, Thus, the charging time of the switching-based charger can be effectively reduced. The CBIRD is composed of four analog circuits, which are the differentiator, the subtraction sample-and-hole (S/H), analog multiplication-division unit (AMDU), and voltage adder for accurate BIR detection. Thus, the proposed switching-based charger with the CBIRD has 45% charging time improvement for Li-ion batteries.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Switching-based charger with continuously built-in resistor detector (CBIRD) and analog multiplication-division unit (AMDU) for fast charging in Li-Ion battery\",\"authors\":\"Ruei-Hong Peng, Tsu-Wei Tsai, Ke-Horng Chen, Zhih Han Tai, Yi Hsuan Cheng, Chi Chung Tsai, Hsin-Yu Luo, Shih-Ming Wang, Long-Der Chen, Cheng-Chen Yang, Jui-Lung Chen\",\"doi\":\"10.1109/ESSCIRC.2013.6649096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposed continuously built-in resistor detector (CBIRD) monitors the built-in resistance (BIR) of the Li-Ion batteries for achieving fast charging process. Owing to the detection of the battery built-in resistance in real-time, the transition from the constant-current (CC) mode to the constant-voltage (CV) mode can be postponed to have large energy storing in the battery, Thus, the charging time of the switching-based charger can be effectively reduced. The CBIRD is composed of four analog circuits, which are the differentiator, the subtraction sample-and-hole (S/H), analog multiplication-division unit (AMDU), and voltage adder for accurate BIR detection. Thus, the proposed switching-based charger with the CBIRD has 45% charging time improvement for Li-ion batteries.\",\"PeriodicalId\":183620,\"journal\":{\"name\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2013.6649096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Switching-based charger with continuously built-in resistor detector (CBIRD) and analog multiplication-division unit (AMDU) for fast charging in Li-Ion battery
Proposed continuously built-in resistor detector (CBIRD) monitors the built-in resistance (BIR) of the Li-Ion batteries for achieving fast charging process. Owing to the detection of the battery built-in resistance in real-time, the transition from the constant-current (CC) mode to the constant-voltage (CV) mode can be postponed to have large energy storing in the battery, Thus, the charging time of the switching-based charger can be effectively reduced. The CBIRD is composed of four analog circuits, which are the differentiator, the subtraction sample-and-hole (S/H), analog multiplication-division unit (AMDU), and voltage adder for accurate BIR detection. Thus, the proposed switching-based charger with the CBIRD has 45% charging time improvement for Li-ion batteries.