一种新的变化点方法,用于检测气体排放源使用远程包含浓度数据

I. Eckley, C. Kirch, S. Weber
{"title":"一种新的变化点方法,用于检测气体排放源使用远程包含浓度数据","authors":"I. Eckley, C. Kirch, S. Weber","doi":"10.1214/20-aoas1345","DOIUrl":null,"url":null,"abstract":"Motivated by an example from remote sensing of gas emission sources, we derive two novel change point procedures for multivariate time series where, in contrast to classical change point literature, the changes are not required to be aligned in the different components of the time series. Instead the change points are described by a functional relationship where the precise shape depends on unknown parameters of interest such as the source of the gas emission in the above example. Two different types of tests and the corresponding estimators for the unknown parameters describing the change locations are proposed. We derive the null asymptotics for both tests under weak assumptions on the error time series and show asymptotic consistency under alternatives. Furthermore, we prove consistency for the corresponding estimators of the parameters of interest. The small sample behavior of the methodology is assessed by means of a simulation study and the above remote sensing example analyzed in detail.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"325 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel change-point approach for the detection of gas emission sources using remotely contained concentration data\",\"authors\":\"I. Eckley, C. Kirch, S. Weber\",\"doi\":\"10.1214/20-aoas1345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by an example from remote sensing of gas emission sources, we derive two novel change point procedures for multivariate time series where, in contrast to classical change point literature, the changes are not required to be aligned in the different components of the time series. Instead the change points are described by a functional relationship where the precise shape depends on unknown parameters of interest such as the source of the gas emission in the above example. Two different types of tests and the corresponding estimators for the unknown parameters describing the change locations are proposed. We derive the null asymptotics for both tests under weak assumptions on the error time series and show asymptotic consistency under alternatives. Furthermore, we prove consistency for the corresponding estimators of the parameters of interest. The small sample behavior of the methodology is assessed by means of a simulation study and the above remote sensing example analyzed in detail.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"325 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aoas1345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-aoas1345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以气体排放源遥感为例,我们推导了两种新的多元时间序列变化点方法,与传统的变化点文献不同,这些变化点不需要在时间序列的不同组成部分中对齐。相反,变化点是通过函数关系来描述的,其中精确的形状取决于未知的感兴趣的参数,例如上述示例中的气体排放源。提出了两种不同类型的测试和描述变化位置的未知参数的相应估计。在误差时间序列的弱假设条件下,我们得到了两个检验的零渐近性,并证明了在备选条件下的渐近一致性。进一步,我们证明了相关参数的估计量的相合性。通过模拟研究评估了该方法的小样本行为,并对上述遥感实例进行了详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel change-point approach for the detection of gas emission sources using remotely contained concentration data
Motivated by an example from remote sensing of gas emission sources, we derive two novel change point procedures for multivariate time series where, in contrast to classical change point literature, the changes are not required to be aligned in the different components of the time series. Instead the change points are described by a functional relationship where the precise shape depends on unknown parameters of interest such as the source of the gas emission in the above example. Two different types of tests and the corresponding estimators for the unknown parameters describing the change locations are proposed. We derive the null asymptotics for both tests under weak assumptions on the error time series and show asymptotic consistency under alternatives. Furthermore, we prove consistency for the corresponding estimators of the parameters of interest. The small sample behavior of the methodology is assessed by means of a simulation study and the above remote sensing example analyzed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1