基于图论的功能连通性分析在视觉运动任务下的脑动力学估计

Thi Mai Phuong Nguyen, Xinzhe Li, Y. Hayashi, S. Yano, T. Kondo
{"title":"基于图论的功能连通性分析在视觉运动任务下的脑动力学估计","authors":"Thi Mai Phuong Nguyen, Xinzhe Li, Y. Hayashi, S. Yano, T. Kondo","doi":"10.1109/BIBE.2019.00110","DOIUrl":null,"url":null,"abstract":"Network studies of brain connectivity have demonstrated that the highly connected area, or hub, is a vital feature of human functional and structural brain organization. Hubs identify which region plays an important role in cognitive/sensorimotor tasks. In addition, a complex visuomotor learning skill causes specific changes of neuronal activation across brain regions. Accordingly, this study utilizes the hub as one of the features to map the visuomotor learning tasks and their dynamic functional connectivity (dFC). The electroencephalogram (EEG) data recorded under three different behavior conditions were investigated: motion only (MO), vision only (VO), and tracking (Tra) conditions. Here, we used the phase locking value (PLV) with a sliding window (50 ms) to calculate the dFC at four distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta), 26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector centrality to evaluate the hub identification. The Gaussian Mixture Model (GMM) was applied to investigate the dFC patterns. The results showed that the dFC patterns with the hub feature represent the characteristic of neuronal activities under visuomotor coordination.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimation of Brain Dynamics Under Visuomotor Task using Functional Connectivity Analysis Based on Graph Theory\",\"authors\":\"Thi Mai Phuong Nguyen, Xinzhe Li, Y. Hayashi, S. Yano, T. Kondo\",\"doi\":\"10.1109/BIBE.2019.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network studies of brain connectivity have demonstrated that the highly connected area, or hub, is a vital feature of human functional and structural brain organization. Hubs identify which region plays an important role in cognitive/sensorimotor tasks. In addition, a complex visuomotor learning skill causes specific changes of neuronal activation across brain regions. Accordingly, this study utilizes the hub as one of the features to map the visuomotor learning tasks and their dynamic functional connectivity (dFC). The electroencephalogram (EEG) data recorded under three different behavior conditions were investigated: motion only (MO), vision only (VO), and tracking (Tra) conditions. Here, we used the phase locking value (PLV) with a sliding window (50 ms) to calculate the dFC at four distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta), 26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector centrality to evaluate the hub identification. The Gaussian Mixture Model (GMM) was applied to investigate the dFC patterns. The results showed that the dFC patterns with the hub feature represent the characteristic of neuronal activities under visuomotor coordination.\",\"PeriodicalId\":318819,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2019.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大脑连接的网络研究表明,高度连接的区域或枢纽是人类功能和结构大脑组织的重要特征。中枢识别哪个区域在认知/感觉运动任务中起重要作用。此外,复杂的视觉运动学习技能会引起大脑各区域神经元激活的特定变化。因此,本研究利用中枢作为特征之一来映射视觉运动学习任务及其动态功能连接(dFC)。研究了三种不同行为条件下的脑电图(EEG)数据:仅运动(MO),仅视觉(VO)和跟踪(Tra)条件。在这里,我们使用带滑动窗口(50 ms)的锁相值(PLV)来计算4个不同频段的dFC: 8-12 Hz (alpha)、18-22 Hz(低beta)、26-30 Hz(高beta)和38-42 Hz (gamma),并使用特征向量中心性来评估轮毂识别。采用高斯混合模型(GMM)对dFC模式进行了研究。结果表明,具有中枢特征的dFC模式代表了视觉运动协调下神经元活动的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Brain Dynamics Under Visuomotor Task using Functional Connectivity Analysis Based on Graph Theory
Network studies of brain connectivity have demonstrated that the highly connected area, or hub, is a vital feature of human functional and structural brain organization. Hubs identify which region plays an important role in cognitive/sensorimotor tasks. In addition, a complex visuomotor learning skill causes specific changes of neuronal activation across brain regions. Accordingly, this study utilizes the hub as one of the features to map the visuomotor learning tasks and their dynamic functional connectivity (dFC). The electroencephalogram (EEG) data recorded under three different behavior conditions were investigated: motion only (MO), vision only (VO), and tracking (Tra) conditions. Here, we used the phase locking value (PLV) with a sliding window (50 ms) to calculate the dFC at four distinct frequency bands: 8-12 Hz (alpha), 18-22 Hz (low beta), 26-30 Hz (high beta) and 38-42 Hz (gamma), and the eigenvector centrality to evaluate the hub identification. The Gaussian Mixture Model (GMM) was applied to investigate the dFC patterns. The results showed that the dFC patterns with the hub feature represent the characteristic of neuronal activities under visuomotor coordination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1