基于神经网络的电压安全监测与控制

K. C. Hui, M. Short
{"title":"基于神经网络的电压安全监测与控制","authors":"K. C. Hui, M. Short","doi":"10.1109/ANN.1991.213503","DOIUrl":null,"url":null,"abstract":"Voltage collapse evaluation methods require elaborate computations to determine the existence of feasible load flow solutions in power systems. The time-consuming process of solving the stiff nonlinear system equations in these evaluation methods makes them inefficient for on-line monitoring of voltage collapse. The authors introduce an artificial neural network approach to voltage security monitoring and control. The neural network uses its association mechanism to approximate the complicated mathematical formulation of the voltage collapse phenomenon. The inherent parallel information processing nature of the neural network, which provides the capability of fast computation, enables the neural network approach to meet the rigorous demands of real-time monitoring and control. The IEEE 57 busbar system is used to demonstrate the applicability of the artificial neural network approach to the problem of voltage security monitoring and control in power systems.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A neural networks approach to voltage security monitoring and control\",\"authors\":\"K. C. Hui, M. Short\",\"doi\":\"10.1109/ANN.1991.213503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage collapse evaluation methods require elaborate computations to determine the existence of feasible load flow solutions in power systems. The time-consuming process of solving the stiff nonlinear system equations in these evaluation methods makes them inefficient for on-line monitoring of voltage collapse. The authors introduce an artificial neural network approach to voltage security monitoring and control. The neural network uses its association mechanism to approximate the complicated mathematical formulation of the voltage collapse phenomenon. The inherent parallel information processing nature of the neural network, which provides the capability of fast computation, enables the neural network approach to meet the rigorous demands of real-time monitoring and control. The IEEE 57 busbar system is used to demonstrate the applicability of the artificial neural network approach to the problem of voltage security monitoring and control in power systems.<<ETX>>\",\"PeriodicalId\":119713,\"journal\":{\"name\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1991.213503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

电压崩溃评估方法需要详细的计算来确定电力系统中是否存在可行的潮流解。这些评估方法求解刚性非线性系统方程耗时长,不利于电压崩溃的在线监测。介绍了一种基于人工神经网络的电压安全监测与控制方法。神经网络利用其关联机制来逼近电压崩溃现象的复杂数学表达式。神经网络固有的并行信息处理特性,提供了快速的计算能力,使神经网络方法能够满足实时监测和控制的严格要求。以ieee57母线系统为例,验证了人工神经网络方法在电力系统电压安全监测与控制问题中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A neural networks approach to voltage security monitoring and control
Voltage collapse evaluation methods require elaborate computations to determine the existence of feasible load flow solutions in power systems. The time-consuming process of solving the stiff nonlinear system equations in these evaluation methods makes them inefficient for on-line monitoring of voltage collapse. The authors introduce an artificial neural network approach to voltage security monitoring and control. The neural network uses its association mechanism to approximate the complicated mathematical formulation of the voltage collapse phenomenon. The inherent parallel information processing nature of the neural network, which provides the capability of fast computation, enables the neural network approach to meet the rigorous demands of real-time monitoring and control. The IEEE 57 busbar system is used to demonstrate the applicability of the artificial neural network approach to the problem of voltage security monitoring and control in power systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1