无杂散低复杂度混合嵌套总线分割/SP-MASH数字Delta-Sigma调制器

Tieu-Khanh Luong, Hong-Hanh Hoang, Hoang-Anh Nguyen-Minh, C. D. Bui, Son Bui, Trung‐Kien Nguyen
{"title":"无杂散低复杂度混合嵌套总线分割/SP-MASH数字Delta-Sigma调制器","authors":"Tieu-Khanh Luong, Hong-Hanh Hoang, Hoang-Anh Nguyen-Minh, C. D. Bui, Son Bui, Trung‐Kien Nguyen","doi":"10.1109/APCCAS50809.2020.9301657","DOIUrl":null,"url":null,"abstract":"Digital Delta-Sigma Modulators (DDSMs) are widely used in integrated circuits for wireless communications, particularly in fractional-N frequency synthesizers and oversampled digital-to-analog converters (DACs). A large bus-width is often required to have fine frequency resolution especially in 5G, which causes a high hardware complexity. A nested bus-splitting DDSM has advantages of potential speed and compact area over the conventional DDSMs, and hence reduces hardware complexity thanks to its smaller bus width. However, this architecture still suffers from spurious tones, especially in the case of constant or periodic inputs. In this work, an SP-MASH architecture has been embedded into a nested bus-splitting DDSM to overcome the spur problem. The synthesis result by Synopsys Design Compiler using TSMC 28 nm CMOS standard cell shows that the advantage of hardware cost was preserved while the spur-free performance was achieved by this hybrid scheme. Its function and effectiveness was also successfully verified with Xilinx Virtex UltraScale+ field-programmable-gate-array (FPGA).","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spur-Free Low-Complexity Hybrid Nested Bus-Splitting/SP-MASH Digital Delta-Sigma Modulator\",\"authors\":\"Tieu-Khanh Luong, Hong-Hanh Hoang, Hoang-Anh Nguyen-Minh, C. D. Bui, Son Bui, Trung‐Kien Nguyen\",\"doi\":\"10.1109/APCCAS50809.2020.9301657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital Delta-Sigma Modulators (DDSMs) are widely used in integrated circuits for wireless communications, particularly in fractional-N frequency synthesizers and oversampled digital-to-analog converters (DACs). A large bus-width is often required to have fine frequency resolution especially in 5G, which causes a high hardware complexity. A nested bus-splitting DDSM has advantages of potential speed and compact area over the conventional DDSMs, and hence reduces hardware complexity thanks to its smaller bus width. However, this architecture still suffers from spurious tones, especially in the case of constant or periodic inputs. In this work, an SP-MASH architecture has been embedded into a nested bus-splitting DDSM to overcome the spur problem. The synthesis result by Synopsys Design Compiler using TSMC 28 nm CMOS standard cell shows that the advantage of hardware cost was preserved while the spur-free performance was achieved by this hybrid scheme. Its function and effectiveness was also successfully verified with Xilinx Virtex UltraScale+ field-programmable-gate-array (FPGA).\",\"PeriodicalId\":127075,\"journal\":{\"name\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS50809.2020.9301657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字δ - σ调制器(dddms)广泛应用于无线通信集成电路中,特别是在分数n频率合成器和过采样数模转换器(dac)中。特别是在5G中,通常需要较大的总线宽度以获得良好的频率分辨率,这导致硬件复杂性很高。与传统的DDSM相比,嵌套总线分割DDSM具有潜在的速度和紧凑的面积优势,并且由于其更小的总线宽度,因此降低了硬件复杂性。然而,这种结构仍然受到杂散音调的影响,特别是在恒定或周期性输入的情况下。在这项工作中,SP-MASH架构被嵌入到一个嵌套的总线分割DDSM中,以克服支线问题。采用台积电28纳米CMOS标准晶片的Synopsys Design Compiler合成结果表明,该混合方案在保持硬件成本优势的同时,实现了无杂散性能。Xilinx Virtex UltraScale+现场可编程门阵列(FPGA)也成功验证了其功能和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Spur-Free Low-Complexity Hybrid Nested Bus-Splitting/SP-MASH Digital Delta-Sigma Modulator
Digital Delta-Sigma Modulators (DDSMs) are widely used in integrated circuits for wireless communications, particularly in fractional-N frequency synthesizers and oversampled digital-to-analog converters (DACs). A large bus-width is often required to have fine frequency resolution especially in 5G, which causes a high hardware complexity. A nested bus-splitting DDSM has advantages of potential speed and compact area over the conventional DDSMs, and hence reduces hardware complexity thanks to its smaller bus width. However, this architecture still suffers from spurious tones, especially in the case of constant or periodic inputs. In this work, an SP-MASH architecture has been embedded into a nested bus-splitting DDSM to overcome the spur problem. The synthesis result by Synopsys Design Compiler using TSMC 28 nm CMOS standard cell shows that the advantage of hardware cost was preserved while the spur-free performance was achieved by this hybrid scheme. Its function and effectiveness was also successfully verified with Xilinx Virtex UltraScale+ field-programmable-gate-array (FPGA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Truth from Practice, Learning beyond Teaching" Exploration in Teaching Analog Integrated Circuit 100 MHz Random Number Generator Design Using Interleaved Metastable NAND/NOR Latches* Performance Analysis of Non-Profiled Side Channel Attacks Based on Convolutional Neural Networks A Self-coupled DT MASH ΔΣ Modulator with High Tolerance to Noise Leakage An Energy-Efficient Time-Domain Binary Neural Network Accelerator with Error-Detection in 28nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1