{"title":"基于凸优化的超大规模阵列宽带传感器位置选择","authors":"Y. Lai, R. Balan, Heiko Claussen, J. Rosca","doi":"10.1109/WASPAA.2013.6701889","DOIUrl":null,"url":null,"abstract":"Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Broadband sensor location selection using convex optimization in very large scale arrays\",\"authors\":\"Y. Lai, R. Balan, Heiko Claussen, J. Rosca\",\"doi\":\"10.1109/WASPAA.2013.6701889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Broadband sensor location selection using convex optimization in very large scale arrays
Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a broadband acoustic field. Using all the microphones at once is impractical because of the amount of data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the set of D microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of the problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. We test the robustness of the our solution through simulated annealing and compare its performance against a classical beamformer which maximizes SNR. Since switching from a subset of D microphones to another subset of D microphones at every sample is possible, we construct a space-time-frequency sampling scheme that achieves near optimal performance.