基于聚类分析和kNN的智慧城市停车场入住率预测

M. Muntean
{"title":"基于聚类分析和kNN的智慧城市停车场入住率预测","authors":"M. Muntean","doi":"10.1109/ECAI46879.2019.9042098","DOIUrl":null,"url":null,"abstract":"In car park occupancy problem, large amounts of data are collected from sensors and stored in databases. In order to discover useful information from such data, data mining techniques are applied. In this paper I propose to find alternative solutions for Birmingham car park occupancy issue. Our approach consist in clustering first the dataset in order to obtain relevant periods of time within a day and then forecast data within these clusters. Our experiments show that splitting data into six clusters and predict car park occupancy with k-Nearest Neighbor technique lead to the highest forecast rates.","PeriodicalId":285780,"journal":{"name":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Car Park Occupancy Rates Forecasting based on Cluster Analysis and kNN in Smart Cities\",\"authors\":\"M. Muntean\",\"doi\":\"10.1109/ECAI46879.2019.9042098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In car park occupancy problem, large amounts of data are collected from sensors and stored in databases. In order to discover useful information from such data, data mining techniques are applied. In this paper I propose to find alternative solutions for Birmingham car park occupancy issue. Our approach consist in clustering first the dataset in order to obtain relevant periods of time within a day and then forecast data within these clusters. Our experiments show that splitting data into six clusters and predict car park occupancy with k-Nearest Neighbor technique lead to the highest forecast rates.\",\"PeriodicalId\":285780,\"journal\":{\"name\":\"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECAI46879.2019.9042098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI46879.2019.9042098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在停车场占用问题中,从传感器收集大量数据并存储在数据库中。为了从这些数据中发现有用的信息,应用了数据挖掘技术。在本文中,我建议为伯明翰停车场占用问题寻找替代解决方案。我们的方法包括首先对数据集进行聚类,以获得一天内的相关时间段,然后预测这些聚类中的数据。我们的实验表明,将数据分成6个簇并使用k-最近邻技术预测停车场占用率可以获得最高的预测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Car Park Occupancy Rates Forecasting based on Cluster Analysis and kNN in Smart Cities
In car park occupancy problem, large amounts of data are collected from sensors and stored in databases. In order to discover useful information from such data, data mining techniques are applied. In this paper I propose to find alternative solutions for Birmingham car park occupancy issue. Our approach consist in clustering first the dataset in order to obtain relevant periods of time within a day and then forecast data within these clusters. Our experiments show that splitting data into six clusters and predict car park occupancy with k-Nearest Neighbor technique lead to the highest forecast rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Biometric Security Model with Co-Occurrence Matrices for Palmprint features Nonverbal Communication in Job Interviews. A Case Study on Local Organisations Current consumption analysis for 8-bit microcontrollers Biometric System based on Facial Recognition A Case Study of Multi-Robot Systems Coordination using PSO simulated in Webots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1