{"title":"基于systemC的实时系统仿真通用RTOS模型","authors":"Rocco Le Moigne, O. Pasquier, J. P. Calvez","doi":"10.1109/DATE.2004.1269211","DOIUrl":null,"url":null,"abstract":"The main difficulties in designing real-time systems are related to time constraints: if an action is performed too late, it is considered as a fault (with different levels of criticism). Designers need to use a solution that fully supports timing constraints and enables them to simulate early on the design process a real-time system. One of the main difficulties in designing HW/SW systems resides in studying the effect of serializing tasks on processors running a real-time operating system (RTOS). In this paper, we present a generic model of RTOS based on systemC. It allows assessing real-time performances and the influence of scheduling according to RTOS properties such as scheduling policy, context-switch time and scheduling latency.","PeriodicalId":335658,"journal":{"name":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"A generic RTOS model for real-time systems simulation with systemC\",\"authors\":\"Rocco Le Moigne, O. Pasquier, J. P. Calvez\",\"doi\":\"10.1109/DATE.2004.1269211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main difficulties in designing real-time systems are related to time constraints: if an action is performed too late, it is considered as a fault (with different levels of criticism). Designers need to use a solution that fully supports timing constraints and enables them to simulate early on the design process a real-time system. One of the main difficulties in designing HW/SW systems resides in studying the effect of serializing tasks on processors running a real-time operating system (RTOS). In this paper, we present a generic model of RTOS based on systemC. It allows assessing real-time performances and the influence of scheduling according to RTOS properties such as scheduling policy, context-switch time and scheduling latency.\",\"PeriodicalId\":335658,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe Conference and Exhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2004.1269211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe Conference and Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2004.1269211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generic RTOS model for real-time systems simulation with systemC
The main difficulties in designing real-time systems are related to time constraints: if an action is performed too late, it is considered as a fault (with different levels of criticism). Designers need to use a solution that fully supports timing constraints and enables them to simulate early on the design process a real-time system. One of the main difficulties in designing HW/SW systems resides in studying the effect of serializing tasks on processors running a real-time operating system (RTOS). In this paper, we present a generic model of RTOS based on systemC. It allows assessing real-time performances and the influence of scheduling according to RTOS properties such as scheduling policy, context-switch time and scheduling latency.