简要回顾使用深度神经网络的耳朵识别过程

Q1 Mathematics Journal of Applied Logic Pub Date : 2017-11-01 DOI:10.1016/j.jal.2016.11.014
Pedro Luis Galdámez, William Raveane, Angélica González Arrieta
{"title":"简要回顾使用深度神经网络的耳朵识别过程","authors":"Pedro Luis Galdámez,&nbsp;William Raveane,&nbsp;Angélica González Arrieta","doi":"10.1016/j.jal.2016.11.014","DOIUrl":null,"url":null,"abstract":"<div><p>The process of precisely recognize people by ears has been getting major attention in recent years. It represents an important step in the biometric research, especially as a complement to face recognition systems which have difficult in real conditions. This is due to the great variation in shapes, variable lighting conditions, and the changing profile shape which is a planar representation of a complex object. An ear recognition system involving a convolutional neural networks (CNN) is proposed to identify a person given an input image. The proposed method matches the performance of other traditional approaches when analyzed against clean photographs. However, the F1 metric of the results shows improvements in specificity of the recognition. We also present a technique for improving the speed of a CNN applied to large input images through the optimization of the sliding window approach.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"24 ","pages":"Pages 62-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.014","citationCount":"51","resultStr":"{\"title\":\"A brief review of the ear recognition process using deep neural networks\",\"authors\":\"Pedro Luis Galdámez,&nbsp;William Raveane,&nbsp;Angélica González Arrieta\",\"doi\":\"10.1016/j.jal.2016.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The process of precisely recognize people by ears has been getting major attention in recent years. It represents an important step in the biometric research, especially as a complement to face recognition systems which have difficult in real conditions. This is due to the great variation in shapes, variable lighting conditions, and the changing profile shape which is a planar representation of a complex object. An ear recognition system involving a convolutional neural networks (CNN) is proposed to identify a person given an input image. The proposed method matches the performance of other traditional approaches when analyzed against clean photographs. However, the F1 metric of the results shows improvements in specificity of the recognition. We also present a technique for improving the speed of a CNN applied to large input images through the optimization of the sliding window approach.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"24 \",\"pages\":\"Pages 62-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.014\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 51

摘要

近年来,通过耳朵精确识别人的过程受到了人们的广泛关注。它代表了生物识别研究的重要一步,特别是作为人脸识别系统在现实条件下难以实现的补充。这是由于形状的巨大变化,可变的照明条件,以及变化的轮廓形状,这是一个复杂物体的平面表示。提出了一种基于卷积神经网络(CNN)的人耳识别系统,用于识别给定图像的人。当对干净的图像进行分析时,所提出的方法的性能与其他传统方法相匹配。然而,结果的F1度量显示识别的特异性有所提高。我们还提出了一种技术,通过优化滑动窗口方法来提高应用于大型输入图像的CNN的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A brief review of the ear recognition process using deep neural networks

The process of precisely recognize people by ears has been getting major attention in recent years. It represents an important step in the biometric research, especially as a complement to face recognition systems which have difficult in real conditions. This is due to the great variation in shapes, variable lighting conditions, and the changing profile shape which is a planar representation of a complex object. An ear recognition system involving a convolutional neural networks (CNN) is proposed to identify a person given an input image. The proposed method matches the performance of other traditional approaches when analyzed against clean photographs. However, the F1 metric of the results shows improvements in specificity of the recognition. We also present a technique for improving the speed of a CNN applied to large input images through the optimization of the sliding window approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
期刊最新文献
Editorial Board Editorial Board Formal analysis of SEU mitigation for early dependability and performability analysis of FPGA-based space applications Logical Investigations on Assertion and Denial Natural deduction for bi-intuitionistic logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1