R2T的技术展望:带有外键的差分私有查询求值的实例最优截断

Graham Cormode
{"title":"R2T的技术展望:带有外键的差分私有查询求值的实例最优截断","authors":"Graham Cormode","doi":"10.1145/3604437.3604461","DOIUrl":null,"url":null,"abstract":"Increased use of data to inform decision making has brought with it a rising awareness of the importance of privacy, and the need for appropriate mitigations to be put in place to protect the interests of individuals whose data is being processed. From the demographic statistics that are produced by national censuses, to the complex predictive models built by \"big tech\" companies, data is the fuel that powers these applications. A majority of such uses rely on data that is derived from the properties and actions of individual people. This data is therefore considered sensitive, and in need of protections to prevent inappropriate use or disclosure. Some protections come from enforcing policies, access control, and contractual agreements. But in addition, we also seek technical interventions: definitions and algorithms that can be applied by computer systems in order to protect the private information while still enabling the intended use.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"728 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Perspective on 'R2T: Instance-optimal Truncation for Differentially Private Query Evaluation with Foreign Keys\",\"authors\":\"Graham Cormode\",\"doi\":\"10.1145/3604437.3604461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased use of data to inform decision making has brought with it a rising awareness of the importance of privacy, and the need for appropriate mitigations to be put in place to protect the interests of individuals whose data is being processed. From the demographic statistics that are produced by national censuses, to the complex predictive models built by \\\"big tech\\\" companies, data is the fuel that powers these applications. A majority of such uses rely on data that is derived from the properties and actions of individual people. This data is therefore considered sensitive, and in need of protections to prevent inappropriate use or disclosure. Some protections come from enforcing policies, access control, and contractual agreements. But in addition, we also seek technical interventions: definitions and algorithms that can be applied by computer systems in order to protect the private information while still enabling the intended use.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"728 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604437.3604461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604437.3604461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越来越多地使用数据为决策提供信息,使人们越来越认识到隐私的重要性,并认识到需要采取适当的缓解措施,以保护正在处理其数据的个人的利益。从国家人口普查产生的人口统计数据,到“大型科技”公司建立的复杂预测模型,数据是推动这些应用的燃料。大多数此类应用依赖于从个人属性和行为中获得的数据。因此,这些数据被认为是敏感的,需要保护以防止不当使用或披露。一些保护来自于执行策略、访问控制和合同协议。但除此之外,我们还寻求技术干预:计算机系统可以应用的定义和算法,以便在保护私人信息的同时仍能实现预期用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Technical Perspective on 'R2T: Instance-optimal Truncation for Differentially Private Query Evaluation with Foreign Keys
Increased use of data to inform decision making has brought with it a rising awareness of the importance of privacy, and the need for appropriate mitigations to be put in place to protect the interests of individuals whose data is being processed. From the demographic statistics that are produced by national censuses, to the complex predictive models built by "big tech" companies, data is the fuel that powers these applications. A majority of such uses rely on data that is derived from the properties and actions of individual people. This data is therefore considered sensitive, and in need of protections to prevent inappropriate use or disclosure. Some protections come from enforcing policies, access control, and contractual agreements. But in addition, we also seek technical interventions: definitions and algorithms that can be applied by computer systems in order to protect the private information while still enabling the intended use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1