基于稀疏表示的非均匀噪声DOA估计方法

Qiuxiang Shen, Huan Wan, B. Liao
{"title":"基于稀疏表示的非均匀噪声DOA估计方法","authors":"Qiuxiang Shen, Huan Wan, B. Liao","doi":"10.1109/ICDSP.2018.8631626","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for direction-of-arrival (DOA) estimation in unknown nonuniform noise based on iterative noise covariance and noise-free covariance matrix estimation and sparse representation is proposed. More specifically, in the first stage, the noise covariance matrix and noise-free covariance matrix are iteratively estimated through a weighted least square (WLS) minimization problem. Next, the DOA estimation problem is reduced to a sparse reconstruction problem with nonnegativity constraint by exploiting the sparsity of the prewhitened noise- free covariance matrix after vectorization. Numerical examples are conducted to validate the effectiveness and superior performance of the proposed approach over the existing sparsity-aware methods we have tested.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Sparse Representation Based Method for DOA Estimation Based in Nonuniform Noise\",\"authors\":\"Qiuxiang Shen, Huan Wan, B. Liao\",\"doi\":\"10.1109/ICDSP.2018.8631626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method for direction-of-arrival (DOA) estimation in unknown nonuniform noise based on iterative noise covariance and noise-free covariance matrix estimation and sparse representation is proposed. More specifically, in the first stage, the noise covariance matrix and noise-free covariance matrix are iteratively estimated through a weighted least square (WLS) minimization problem. Next, the DOA estimation problem is reduced to a sparse reconstruction problem with nonnegativity constraint by exploiting the sparsity of the prewhitened noise- free covariance matrix after vectorization. Numerical examples are conducted to validate the effectiveness and superior performance of the proposed approach over the existing sparsity-aware methods we have tested.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于迭代噪声协方差、无噪声协方差矩阵估计和稀疏表示的未知非均匀噪声到达方向估计新方法。具体而言,在第一阶段,通过加权最小二乘(WLS)最小化问题迭代估计噪声协方差矩阵和无噪声协方差矩阵。其次,利用矢量化后预白的无噪声协方差矩阵的稀疏性,将DOA估计问题转化为具有非负性约束的稀疏重建问题。通过数值算例验证了该方法的有效性和优于我们测试过的现有稀疏感知方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sparse Representation Based Method for DOA Estimation Based in Nonuniform Noise
In this paper, a new method for direction-of-arrival (DOA) estimation in unknown nonuniform noise based on iterative noise covariance and noise-free covariance matrix estimation and sparse representation is proposed. More specifically, in the first stage, the noise covariance matrix and noise-free covariance matrix are iteratively estimated through a weighted least square (WLS) minimization problem. Next, the DOA estimation problem is reduced to a sparse reconstruction problem with nonnegativity constraint by exploiting the sparsity of the prewhitened noise- free covariance matrix after vectorization. Numerical examples are conducted to validate the effectiveness and superior performance of the proposed approach over the existing sparsity-aware methods we have tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1