{"title":"基于鲁棒f比的TESPAR特征识别优化","authors":"K. Satya Prasad, K. Anitha Sheela, M. Sridevi","doi":"10.1109/ICSCN.2007.350673","DOIUrl":null,"url":null,"abstract":"This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition\",\"authors\":\"K. Satya Prasad, K. Anitha Sheela, M. Sridevi\",\"doi\":\"10.1109/ICSCN.2007.350673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition
This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose