基于鲁棒f比的TESPAR特征识别优化

K. Satya Prasad, K. Anitha Sheela, M. Sridevi
{"title":"基于鲁棒f比的TESPAR特征识别优化","authors":"K. Satya Prasad, K. Anitha Sheela, M. Sridevi","doi":"10.1109/ICSCN.2007.350673","DOIUrl":null,"url":null,"abstract":"This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition\",\"authors\":\"K. Satya Prasad, K. Anitha Sheela, M. Sridevi\",\"doi\":\"10.1109/ICSCN.2007.350673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose\",\"PeriodicalId\":257948,\"journal\":{\"name\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Signal Processing, Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2007.350673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了一种有效的优化设计方法,该方法利用TESPAR特征的平均f比得分,在不利的噪声条件下也能获得较高的识别精度。提出了一种新的排序方案,通过对不同信噪比(SNR)水平的F-Ratio分数取算术平均值来稳定不同噪声水平下特征的排序。给出了基于文本的20人语音识别系统的结果。采用径向基函数神经网络进行识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of TESPAR Features using Robust F-Ratio for Speaker Recognition
This paper deals with implementing an efficient optimization technique for designing an automatic speaker recognition (ASR) System, which uses average F-ratio score of TESPAR features, to yield high recognition accuracy even in adverse noisy conditions. A new ranking scheme is also proposed in order to stabilize the rank of features in various noise levels by taking arithmetic mean of the F-Ratio scores obtained from various levels of signal to noise ratio (SNR). The result is presented for a text-dependent ASR system with 20 speaker database. An RBF (radial basis function) neural network is used for recognition purpose
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayer Perceptron Neural Network Architecture using VHDL with Combinational Logic Sigmoid Function A Service Time Error Based Scheduling Algorithm for a Computational Grid ASIC Architecture for Implementing Blackman Windowing for Real Time Spectral Analysis FPGA Implementation of Parallel Pipelined Multiplier Less FFT Architecture Based System-On-Chip Design Targetting Multimedia Applications Modified Conservative Staircase Scheme for Video Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1