Lixia Sang, Jing Zhang, Yudong Zhang, Yangbo Zhao, Jia Lin
{"title":"Cu2O/TiO2纳米管阵列的制备及其出氢光阳极的光电化学性能","authors":"Lixia Sang, Jing Zhang, Yudong Zhang, Yangbo Zhao, Jia Lin","doi":"10.1117/12.2187908","DOIUrl":null,"url":null,"abstract":"Cu2O is an environment-friendly p-type semiconductor with narrow band gap (2.0~2.2eV), which has become a popular sensitizer of TiO2. The present work is focused on the preparation of Cu2O/TiO2 nanotube arrays heterostructures via electrochemical deposition. TiO2 nanotube arrays were prepared by anodic oxidation method and calcined at 450°C, then Cu2O were deposited on TiO2 nanotube arrays in a three-electrode system with surfactants PVP in electrolyte at different deposition potentials (-0.2V and-0.3V) for deposition time 5min. The results show that Cu2O nanoparticles deposit on TiO2 nanotube successfully. The obtained Cu2O nanoparticles were quite different in size at deposition potential -0.2V and -0.3V. The resulting Cu2O/TiO2 nanotube arrays have the significant photoresponse in visible light region. Under irradiation of solar simulator (AM1.5, 100mW/cm2), the photocurrent density of the Cu2O/TiO2 nanotube arrays when Cu2O was deposited at a voltage of -0.3V is more than that of pure TiO2 nanotube arrays.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparation of Cu2O/TiO2 nanotube arrays and their photoelectrochemical properties as hydrogen-evolving photoanode\",\"authors\":\"Lixia Sang, Jing Zhang, Yudong Zhang, Yangbo Zhao, Jia Lin\",\"doi\":\"10.1117/12.2187908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu2O is an environment-friendly p-type semiconductor with narrow band gap (2.0~2.2eV), which has become a popular sensitizer of TiO2. The present work is focused on the preparation of Cu2O/TiO2 nanotube arrays heterostructures via electrochemical deposition. TiO2 nanotube arrays were prepared by anodic oxidation method and calcined at 450°C, then Cu2O were deposited on TiO2 nanotube arrays in a three-electrode system with surfactants PVP in electrolyte at different deposition potentials (-0.2V and-0.3V) for deposition time 5min. The results show that Cu2O nanoparticles deposit on TiO2 nanotube successfully. The obtained Cu2O nanoparticles were quite different in size at deposition potential -0.2V and -0.3V. The resulting Cu2O/TiO2 nanotube arrays have the significant photoresponse in visible light region. Under irradiation of solar simulator (AM1.5, 100mW/cm2), the photocurrent density of the Cu2O/TiO2 nanotube arrays when Cu2O was deposited at a voltage of -0.3V is more than that of pure TiO2 nanotube arrays.\",\"PeriodicalId\":142821,\"journal\":{\"name\":\"SPIE Optics + Photonics for Sustainable Energy\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2187908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Cu2O/TiO2 nanotube arrays and their photoelectrochemical properties as hydrogen-evolving photoanode
Cu2O is an environment-friendly p-type semiconductor with narrow band gap (2.0~2.2eV), which has become a popular sensitizer of TiO2. The present work is focused on the preparation of Cu2O/TiO2 nanotube arrays heterostructures via electrochemical deposition. TiO2 nanotube arrays were prepared by anodic oxidation method and calcined at 450°C, then Cu2O were deposited on TiO2 nanotube arrays in a three-electrode system with surfactants PVP in electrolyte at different deposition potentials (-0.2V and-0.3V) for deposition time 5min. The results show that Cu2O nanoparticles deposit on TiO2 nanotube successfully. The obtained Cu2O nanoparticles were quite different in size at deposition potential -0.2V and -0.3V. The resulting Cu2O/TiO2 nanotube arrays have the significant photoresponse in visible light region. Under irradiation of solar simulator (AM1.5, 100mW/cm2), the photocurrent density of the Cu2O/TiO2 nanotube arrays when Cu2O was deposited at a voltage of -0.3V is more than that of pure TiO2 nanotube arrays.