展示了>1.4 kV的OG-FET性能,具有新颖的双场镀几何结构和大面积器件的成功缩放

D. Ji, C. Gupta, Silvia H. Chan, Anchal Agarwal, Wenwen Li, S. Keller, U. Mishra, S. Chowdhury
{"title":"展示了>1.4 kV的OG-FET性能,具有新颖的双场镀几何结构和大面积器件的成功缩放","authors":"D. Ji, C. Gupta, Silvia H. Chan, Anchal Agarwal, Wenwen Li, S. Keller, U. Mishra, S. Chowdhury","doi":"10.1109/IEDM.2017.8268359","DOIUrl":null,"url":null,"abstract":"A normally off (V<inf>th</inf> = 4.7 V) vertical GaN OG-FET with a 10 nm UID-GaN channel interlayer and a 50 nm in-situ Al<inf>2</inf>O<inf>3</inf> gate dielectric has been successfully demonstrated and scaled for higher current operation. By using a novel double field-plated structure for mitigating peak electric field, a high off-state breakdown voltage over 1.4 kV was achieved with a low specific on-state resistance (RON, SP) of 2.2 mΩ.cm<sup>2</sup>. The MOCVD regrown 10 nm GaN channel interlayer enabled a channel resistance lower than 10 Qmm and an average channel electron mobility of 185 cm<sup>2</sup>/Vs. The fabricated large-area transistor with a total area of 400 μm × 500 μm offered a breakdown voltage of 900 V and an on-state resistance (R<inf>on</inf>) of 4.1 Q. Results indicate the potential of vertical GaN OG-FETs for over kV range of power electronics applications.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices\",\"authors\":\"D. Ji, C. Gupta, Silvia H. Chan, Anchal Agarwal, Wenwen Li, S. Keller, U. Mishra, S. Chowdhury\",\"doi\":\"10.1109/IEDM.2017.8268359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A normally off (V<inf>th</inf> = 4.7 V) vertical GaN OG-FET with a 10 nm UID-GaN channel interlayer and a 50 nm in-situ Al<inf>2</inf>O<inf>3</inf> gate dielectric has been successfully demonstrated and scaled for higher current operation. By using a novel double field-plated structure for mitigating peak electric field, a high off-state breakdown voltage over 1.4 kV was achieved with a low specific on-state resistance (RON, SP) of 2.2 mΩ.cm<sup>2</sup>. The MOCVD regrown 10 nm GaN channel interlayer enabled a channel resistance lower than 10 Qmm and an average channel electron mobility of 185 cm<sup>2</sup>/Vs. The fabricated large-area transistor with a total area of 400 μm × 500 μm offered a breakdown voltage of 900 V and an on-state resistance (R<inf>on</inf>) of 4.1 Q. Results indicate the potential of vertical GaN OG-FETs for over kV range of power electronics applications.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

一个常关(Vth = 4.7 V)的垂直GaN ogg - fet,具有10nm的UID-GaN通道中间层和50nm的原位Al2O3栅介电体,已经成功地进行了演示和缩放,以适应更高的电流工作。通过采用一种新型的双场镀结构来减轻峰值电场,实现了超过1.4 kV的高断态击穿电压,而比导态电阻(RON, SP)为2.2 mΩ.cm2。MOCVD再生的10 nm GaN通道间层使通道电阻低于10 Qmm,平均通道电子迁移率为185 cm2/Vs。制备的大面积晶体管总面积为400 μm × 500 μm,击穿电压为900 V,导通电阻(Ron)为4.1 Q.结果表明,垂直GaN ogg - fet在kV以上范围的电力电子应用中具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large-area devices
A normally off (Vth = 4.7 V) vertical GaN OG-FET with a 10 nm UID-GaN channel interlayer and a 50 nm in-situ Al2O3 gate dielectric has been successfully demonstrated and scaled for higher current operation. By using a novel double field-plated structure for mitigating peak electric field, a high off-state breakdown voltage over 1.4 kV was achieved with a low specific on-state resistance (RON, SP) of 2.2 mΩ.cm2. The MOCVD regrown 10 nm GaN channel interlayer enabled a channel resistance lower than 10 Qmm and an average channel electron mobility of 185 cm2/Vs. The fabricated large-area transistor with a total area of 400 μm × 500 μm offered a breakdown voltage of 900 V and an on-state resistance (Ron) of 4.1 Q. Results indicate the potential of vertical GaN OG-FETs for over kV range of power electronics applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel triboelectric nanogenerator with high performance and long duration time of sinusoidal current generation Lab on skin™: 3D monolithically integrated zero-energy micro/nanofludics and FD SOI ion sensitive FETs for wearable multi-sensing sweat applications NbO2 based threshold switch device with high operating temperature (>85°C) for steep-slope MOSFET (∼2mV/dec) with ultra-low voltage operation and improved delay time Time-dependent variability in RRAM-based analog neuromorphic system for pattern recognition Energy-efficient all fiber-based local body heat mapping circuitry combining thermistor and memristor for wearable healthcare device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1