具有变异性的多时相高光谱图像解混:一种在线算法

Pierre-Antoine Thouvenin, N. Dobigeon, J. Tourneret
{"title":"具有变异性的多时相高光谱图像解混:一种在线算法","authors":"Pierre-Antoine Thouvenin, N. Dobigeon, J. Tourneret","doi":"10.1109/ICASSP.2016.7472298","DOIUrl":null,"url":null,"abstract":"Hyperspectral unmixing consists in determining the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may be affected by a significant spectral variability resulting for instance from the temporal evolution of the imaged scene. This phenomenon can be accounted for by using a perturbed linear mixing model. This paper studies an online estimation algorithm for the parameters of this extended linear mixing model. This algorithm is of interest for the practical applications where the size of the hyper-spectral images precludes the use of batch procedures. The performance of the proposed method is evaluated on synthetic data.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"752 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unmixing multitemporal hyperspectral images with variability: An online algorithm\",\"authors\":\"Pierre-Antoine Thouvenin, N. Dobigeon, J. Tourneret\",\"doi\":\"10.1109/ICASSP.2016.7472298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral unmixing consists in determining the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may be affected by a significant spectral variability resulting for instance from the temporal evolution of the imaged scene. This phenomenon can be accounted for by using a perturbed linear mixing model. This paper studies an online estimation algorithm for the parameters of this extended linear mixing model. This algorithm is of interest for the practical applications where the size of the hyper-spectral images precludes the use of batch procedures. The performance of the proposed method is evaluated on synthetic data.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"752 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高光谱解混包括确定构成高光谱图像的参考光谱特征及其在每个像素中的相对丰度分数。在实践中,所识别的特征可能受到显著的光谱变异性的影响,例如,由成像场景的时间演变产生的光谱变异性。这种现象可以用扰动线性混合模型来解释。本文研究了该扩展线性混合模型参数的在线估计算法。该算法对实际应用的兴趣,其中高光谱图像的大小排除了批处理程序的使用。在综合数据上对该方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unmixing multitemporal hyperspectral images with variability: An online algorithm
Hyperspectral unmixing consists in determining the reference spectral signatures composing a hyperspectral image and their relative abundance fractions in each pixel. In practice, the identified signatures may be affected by a significant spectral variability resulting for instance from the temporal evolution of the imaged scene. This phenomenon can be accounted for by using a perturbed linear mixing model. This paper studies an online estimation algorithm for the parameters of this extended linear mixing model. This algorithm is of interest for the practical applications where the size of the hyper-spectral images precludes the use of batch procedures. The performance of the proposed method is evaluated on synthetic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1