{"title":"利用热反射的瞬态热成像","authors":"K. Maize, J. Christofferson, Ali Shakouri","doi":"10.1109/STHERM.2008.4509366","DOIUrl":null,"url":null,"abstract":"Lock-in thermoreflectance imaging has proven effective in obtaining thermal images of active electronic and optoelectronic devices with submicron spatial resolution and 10- 50 mK temperature resolution. Thermoreflectance systems that use a lock-in method capture the steady state thermal signal but provide limited information about the thermal transient. We present a simple time series thermoreflectance method based on pulsed box-car averaging and a novel differencing technique to obtain transient thermal images with millisecond and microsecond time resolution and submicron spatial resolution. The technique relies on precise adjustment of the phase between the pulsed thermal excitation of the device and the illumination pulse used to measure the thermoreflectance change on the device. The full thermal transient pattern is reconstructed and captured in a charge coupled device (CCD) camera in a matter of minutes. Images are presented of the time evolution of the thermal signals on 40times40, and 100times100 micron square gold heaters.","PeriodicalId":285718,"journal":{"name":"2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Transient Thermal Imaging Using Thermoreflectance\",\"authors\":\"K. Maize, J. Christofferson, Ali Shakouri\",\"doi\":\"10.1109/STHERM.2008.4509366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lock-in thermoreflectance imaging has proven effective in obtaining thermal images of active electronic and optoelectronic devices with submicron spatial resolution and 10- 50 mK temperature resolution. Thermoreflectance systems that use a lock-in method capture the steady state thermal signal but provide limited information about the thermal transient. We present a simple time series thermoreflectance method based on pulsed box-car averaging and a novel differencing technique to obtain transient thermal images with millisecond and microsecond time resolution and submicron spatial resolution. The technique relies on precise adjustment of the phase between the pulsed thermal excitation of the device and the illumination pulse used to measure the thermoreflectance change on the device. The full thermal transient pattern is reconstructed and captured in a charge coupled device (CCD) camera in a matter of minutes. Images are presented of the time evolution of the thermal signals on 40times40, and 100times100 micron square gold heaters.\",\"PeriodicalId\":285718,\"journal\":{\"name\":\"2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2008.4509366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Twenty-fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2008.4509366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lock-in thermoreflectance imaging has proven effective in obtaining thermal images of active electronic and optoelectronic devices with submicron spatial resolution and 10- 50 mK temperature resolution. Thermoreflectance systems that use a lock-in method capture the steady state thermal signal but provide limited information about the thermal transient. We present a simple time series thermoreflectance method based on pulsed box-car averaging and a novel differencing technique to obtain transient thermal images with millisecond and microsecond time resolution and submicron spatial resolution. The technique relies on precise adjustment of the phase between the pulsed thermal excitation of the device and the illumination pulse used to measure the thermoreflectance change on the device. The full thermal transient pattern is reconstructed and captured in a charge coupled device (CCD) camera in a matter of minutes. Images are presented of the time evolution of the thermal signals on 40times40, and 100times100 micron square gold heaters.