自适应模式驱动的大面积高分辨率地形数据压缩

Hai Wei, S. Zabuawala, Lei Zhang, Jiejie Zhu, J. Yadegar, J. D. Cruz, Hector J. Gonzalez
{"title":"自适应模式驱动的大面积高分辨率地形数据压缩","authors":"Hai Wei, S. Zabuawala, Lei Zhang, Jiejie Zhu, J. Yadegar, J. D. Cruz, Hector J. Gonzalez","doi":"10.1109/ISM.2011.62","DOIUrl":null,"url":null,"abstract":"This paper presents a novel adaptive pattern-driven approach for compressing large-area high-resolution terrain data. Utilizing a pattern-driven model, the proposed approach achieves efficient terrain data reduction by modeling and encoding disparate visual patterns using a compact set of extracted features. The feasibility and efficiency of the proposed technique were corroborated by experiments using various terrain datasets and comparisons with the state-of-the-art compression techniques. Since different visual patterns are separated and modeled explicitly during the compression process, the proposed technique also holds a great potential for providing a good synergy between compression and compressed-domain analysis.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Pattern-driven Compression of Large-Area High-Resolution Terrain Data\",\"authors\":\"Hai Wei, S. Zabuawala, Lei Zhang, Jiejie Zhu, J. Yadegar, J. D. Cruz, Hector J. Gonzalez\",\"doi\":\"10.1109/ISM.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel adaptive pattern-driven approach for compressing large-area high-resolution terrain data. Utilizing a pattern-driven model, the proposed approach achieves efficient terrain data reduction by modeling and encoding disparate visual patterns using a compact set of extracted features. The feasibility and efficiency of the proposed technique were corroborated by experiments using various terrain datasets and comparisons with the state-of-the-art compression techniques. Since different visual patterns are separated and modeled explicitly during the compression process, the proposed technique also holds a great potential for providing a good synergy between compression and compressed-domain analysis.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于自适应模式驱动的大面积高分辨率地形数据压缩方法。该方法利用模式驱动模型,利用一组紧凑的提取特征对不同的视觉模式进行建模和编码,从而实现高效的地形数据缩减。利用不同地形数据集进行实验,并与最先进的压缩技术进行比较,证实了所提出技术的可行性和效率。由于不同的可视化模式在压缩过程中被分离并显式建模,因此所提出的技术在提供压缩和压缩域分析之间的良好协同方面也具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Pattern-driven Compression of Large-Area High-Resolution Terrain Data
This paper presents a novel adaptive pattern-driven approach for compressing large-area high-resolution terrain data. Utilizing a pattern-driven model, the proposed approach achieves efficient terrain data reduction by modeling and encoding disparate visual patterns using a compact set of extracted features. The feasibility and efficiency of the proposed technique were corroborated by experiments using various terrain datasets and comparisons with the state-of-the-art compression techniques. Since different visual patterns are separated and modeled explicitly during the compression process, the proposed technique also holds a great potential for providing a good synergy between compression and compressed-domain analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Subjective Evaluation of 3D Iptv Broadcasting Implementations Considering Coding and Transmission Degradation A Low Memory Requirements Execution Flow for the Non-Uniform Grid Projection Super-Resolution Algorithm 3D Image Browsing on Mobile Devices Hybrid Video Compression Using Selective Keyframe Identification and Patch-Based Super-Resolution Automatic Bird Species Identification for Large Number of Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1