一种高效可靠的基于公差的主成分分析算法

Michael Yeh, Ming Gu
{"title":"一种高效可靠的基于公差的主成分分析算法","authors":"Michael Yeh, Ming Gu","doi":"10.1109/ICDMW58026.2022.00088","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is an important method for dimensionality reduction in data science and machine learning. However, it is expensive for large matrices when only a few components are needed. Existing fast PCA algorithms typically assume the user will supply the number of components needed, but in practice, they may not know this number beforehand. Thus, it is important to have fast PCA algorithms depending on a tolerance. We develop one such algorithm that runs quickly for matrices with rapidly decaying singular values, provide approximation error bounds that are within a constant factor away from optimal, and demonstrate its utility with data from a variety of applications.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient and Reliable Tolerance- Based Algorithm for Principal Component Analysis\",\"authors\":\"Michael Yeh, Ming Gu\",\"doi\":\"10.1109/ICDMW58026.2022.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal component analysis (PCA) is an important method for dimensionality reduction in data science and machine learning. However, it is expensive for large matrices when only a few components are needed. Existing fast PCA algorithms typically assume the user will supply the number of components needed, but in practice, they may not know this number beforehand. Thus, it is important to have fast PCA algorithms depending on a tolerance. We develop one such algorithm that runs quickly for matrices with rapidly decaying singular values, provide approximation error bounds that are within a constant factor away from optimal, and demonstrate its utility with data from a variety of applications.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

主成分分析(PCA)是数据科学和机器学习中重要的降维方法。然而,当只需要几个组件时,对于大型矩阵来说,这是昂贵的。现有的快速PCA算法通常假设用户将提供所需组件的数量,但在实践中,他们可能事先不知道这个数量。因此,基于容差的快速PCA算法非常重要。我们开发了一种这样的算法,它可以快速运行具有快速衰减的奇异值的矩阵,提供距离最优值在常数因子范围内的近似误差界限,并通过来自各种应用程序的数据演示其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient and Reliable Tolerance- Based Algorithm for Principal Component Analysis
Principal component analysis (PCA) is an important method for dimensionality reduction in data science and machine learning. However, it is expensive for large matrices when only a few components are needed. Existing fast PCA algorithms typically assume the user will supply the number of components needed, but in practice, they may not know this number beforehand. Thus, it is important to have fast PCA algorithms depending on a tolerance. We develop one such algorithm that runs quickly for matrices with rapidly decaying singular values, provide approximation error bounds that are within a constant factor away from optimal, and demonstrate its utility with data from a variety of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1