实验蓝绿激光通信系统发射接收机设计

Tao Xu, Xiaolu Chen, Dong Wen, Xiaolei Sun
{"title":"实验蓝绿激光通信系统发射接收机设计","authors":"Tao Xu, Xiaolu Chen, Dong Wen, Xiaolei Sun","doi":"10.1117/12.2180955","DOIUrl":null,"url":null,"abstract":"An experimental blue-green laser communication system was developed using optical pulse position modulation (PPM) to study the feasibility of high-rate underwater communication among submerged objects. As a primary optical modulation means, PPM modulation is reviewed firstly. By comparison with other means, the conclusion was drawn that PPM has lower power requirement and it is a near optimal modulation for background-limited optical communications. For establishing laser beam propagating through the channel with modulated information through different pulse positions from the transmitter to the receiver, the transmitter subsystem and the receiver subsystem are developed and the key techniques are described separately in detail. Results indicated that the whole blue-green communication system was compact, efficient, reliable and inexpensive, and achieved a high-speed rate communication up to megabits per second and a reasonably low error rates.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of transmitter and receiver for experimental blue-green laser communication system\",\"authors\":\"Tao Xu, Xiaolu Chen, Dong Wen, Xiaolei Sun\",\"doi\":\"10.1117/12.2180955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental blue-green laser communication system was developed using optical pulse position modulation (PPM) to study the feasibility of high-rate underwater communication among submerged objects. As a primary optical modulation means, PPM modulation is reviewed firstly. By comparison with other means, the conclusion was drawn that PPM has lower power requirement and it is a near optimal modulation for background-limited optical communications. For establishing laser beam propagating through the channel with modulated information through different pulse positions from the transmitter to the receiver, the transmitter subsystem and the receiver subsystem are developed and the key techniques are described separately in detail. Results indicated that the whole blue-green communication system was compact, efficient, reliable and inexpensive, and achieved a high-speed rate communication up to megabits per second and a reasonably low error rates.\",\"PeriodicalId\":380636,\"journal\":{\"name\":\"Precision Engineering Measurements and Instrumentation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering Measurements and Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2180955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2180955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了研究水下目标间高速通信的可行性,研制了一种基于光脉冲位置调制(PPM)的蓝绿激光通信实验系统。首先介绍了作为主要光调制手段的PPM调制。通过与其他调制方式的比较,得出PPM具有较低的功率需求,是一种接近最优的背景受限光通信调制方式。为了建立从发射机到接收机通过不同脉冲位置通过调制信息信道传播的激光束,开发了发射机子系统和接收机子系统,并分别对其中的关键技术进行了详细的描述。结果表明,整个蓝绿通信系统结构紧凑、高效、可靠、价格低廉,实现了高达兆比特/秒的高速通信速率和较低的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of transmitter and receiver for experimental blue-green laser communication system
An experimental blue-green laser communication system was developed using optical pulse position modulation (PPM) to study the feasibility of high-rate underwater communication among submerged objects. As a primary optical modulation means, PPM modulation is reviewed firstly. By comparison with other means, the conclusion was drawn that PPM has lower power requirement and it is a near optimal modulation for background-limited optical communications. For establishing laser beam propagating through the channel with modulated information through different pulse positions from the transmitter to the receiver, the transmitter subsystem and the receiver subsystem are developed and the key techniques are described separately in detail. Results indicated that the whole blue-green communication system was compact, efficient, reliable and inexpensive, and achieved a high-speed rate communication up to megabits per second and a reasonably low error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method of gear defect intelligent detection based on transmission noise Simulation research on ATP system of airborne laser communication Multifocal axial confocal microscopic scanning with a phase-only liquid crystal spatial light modulator Small sample analysis of vision measurement error Double-grating diffraction interferometric stylus probing system for surface profiling and roughness measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1