传感器融合提高多惯性测量单元状态估计精度

Ujjval N. Patel, Imraan A. Faruque
{"title":"传感器融合提高多惯性测量单元状态估计精度","authors":"Ujjval N. Patel, Imraan A. Faruque","doi":"10.1109/INERTIAL51137.2021.9430484","DOIUrl":null,"url":null,"abstract":"The growing availability of low-cost commercial inertial measurement units (IMUs) raises questions about how to best improve sensor estimates when using multiple IMUs. This paper reports on the performance of two approaches applied to GPS-denied onboard attitude estimation. The approaches are a virtual IMU approach fusing sensor measurements and a Federated Filter fusing state estimates from several Extended Kalman Filters (EKFs) each using one IMU and magnetometer. We compare their performance as quantified by root mean square (RMS) using parallel implementations of estimators in a Raspberry-Pi-based autopilot during prescribed motions in a motion capture volume. The results suggest that a Multi-IMU GPS-denied approach can deliver comparable performance to the single-IMU GPS aided approach and provide a testbed for multi-IMU performance quantification.11Portions of this work received support from NASA University Leadership Initiative grant 80NSSC20M0162.","PeriodicalId":424028,"journal":{"name":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sensor Fusion To Improve State Estimate Accuracy Using Multiple Inertial Measurement Units\",\"authors\":\"Ujjval N. Patel, Imraan A. Faruque\",\"doi\":\"10.1109/INERTIAL51137.2021.9430484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing availability of low-cost commercial inertial measurement units (IMUs) raises questions about how to best improve sensor estimates when using multiple IMUs. This paper reports on the performance of two approaches applied to GPS-denied onboard attitude estimation. The approaches are a virtual IMU approach fusing sensor measurements and a Federated Filter fusing state estimates from several Extended Kalman Filters (EKFs) each using one IMU and magnetometer. We compare their performance as quantified by root mean square (RMS) using parallel implementations of estimators in a Raspberry-Pi-based autopilot during prescribed motions in a motion capture volume. The results suggest that a Multi-IMU GPS-denied approach can deliver comparable performance to the single-IMU GPS aided approach and provide a testbed for multi-IMU performance quantification.11Portions of this work received support from NASA University Leadership Initiative grant 80NSSC20M0162.\",\"PeriodicalId\":424028,\"journal\":{\"name\":\"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIAL51137.2021.9430484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL51137.2021.9430484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的低成本商用惯性测量单元(imu)提出了如何在使用多个imu时最好地提高传感器估计的问题。本文研究了两种用于gps拒接星载姿态估计的方法的性能。该方法是一种虚拟IMU方法融合传感器测量,一种联邦滤波器融合几个扩展卡尔曼滤波器(ekf)的状态估计,每个扩展卡尔曼滤波器使用一个IMU和磁力仪。我们比较了它们的性能,用均方根(RMS)量化,使用基于树莓派的自动驾驶仪中估计器的并行实现,在运动捕捉体积的规定运动中。结果表明,多imu GPS拒绝方法可以提供与单imu GPS辅助方法相当的性能,并为多imu性能量化提供了一个测试平台。11本研究的部分工作得到了NASA大学领导计划基金80NSSC20M0162的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Fusion To Improve State Estimate Accuracy Using Multiple Inertial Measurement Units
The growing availability of low-cost commercial inertial measurement units (IMUs) raises questions about how to best improve sensor estimates when using multiple IMUs. This paper reports on the performance of two approaches applied to GPS-denied onboard attitude estimation. The approaches are a virtual IMU approach fusing sensor measurements and a Federated Filter fusing state estimates from several Extended Kalman Filters (EKFs) each using one IMU and magnetometer. We compare their performance as quantified by root mean square (RMS) using parallel implementations of estimators in a Raspberry-Pi-based autopilot during prescribed motions in a motion capture volume. The results suggest that a Multi-IMU GPS-denied approach can deliver comparable performance to the single-IMU GPS aided approach and provide a testbed for multi-IMU performance quantification.11Portions of this work received support from NASA University Leadership Initiative grant 80NSSC20M0162.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 10 NANO-G/RT-HZ RESONANT MEMS ACCELEROMETER EMPLOYING ANTI-ALIASING CONTROL Identification of Gain Mismatches in Control Electronics of Rate Integrating CVGs Megahertz Bandwidth Bulk Micromachined Optomechanical Accelerometer With Fiber Optical Interconnects Mode-Matched Multi-Ring Disk Resonator Using Single Crystal (100) Silicon 2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL) Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1