{"title":"在gps拒绝和混乱环境中基于无人机的目标发现和跟踪","authors":"F. Vanegas, D. Campbell, M. Eich, Felipe Gonzalez","doi":"10.1109/IROS.2016.7759360","DOIUrl":null,"url":null,"abstract":"In this paper we describe and flight test a novel system architecture for low cost muti-rotor unmanned aerial vehicles (UAVs) for searching, tracking and following a ground target. The UAV uses only on-board sensors for localisation within a GPS-denied space with obstacles. This mission is formulated as a Partially Observable Markov Decision Process (POMDP) and uses a modular framework that runs on the Robotic Operating System (ROS). This system computes a policy for executing actions instead of way-points to navigate and avoid obstacles. Results indicate that the system is robust to overcome uncertainties in localisation of both, the aircraft and the target and avoids collisions with the obstacles.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"UAV based target finding and tracking in GPS-denied and cluttered environments\",\"authors\":\"F. Vanegas, D. Campbell, M. Eich, Felipe Gonzalez\",\"doi\":\"10.1109/IROS.2016.7759360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe and flight test a novel system architecture for low cost muti-rotor unmanned aerial vehicles (UAVs) for searching, tracking and following a ground target. The UAV uses only on-board sensors for localisation within a GPS-denied space with obstacles. This mission is formulated as a Partially Observable Markov Decision Process (POMDP) and uses a modular framework that runs on the Robotic Operating System (ROS). This system computes a policy for executing actions instead of way-points to navigate and avoid obstacles. Results indicate that the system is robust to overcome uncertainties in localisation of both, the aircraft and the target and avoids collisions with the obstacles.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UAV based target finding and tracking in GPS-denied and cluttered environments
In this paper we describe and flight test a novel system architecture for low cost muti-rotor unmanned aerial vehicles (UAVs) for searching, tracking and following a ground target. The UAV uses only on-board sensors for localisation within a GPS-denied space with obstacles. This mission is formulated as a Partially Observable Markov Decision Process (POMDP) and uses a modular framework that runs on the Robotic Operating System (ROS). This system computes a policy for executing actions instead of way-points to navigate and avoid obstacles. Results indicate that the system is robust to overcome uncertainties in localisation of both, the aircraft and the target and avoids collisions with the obstacles.