具有奖励延迟的多智能体强化学习

Yuyang Zhang, Runyu Zhang, Gen Li, Yu Gu, N. Li
{"title":"具有奖励延迟的多智能体强化学习","authors":"Yuyang Zhang, Runyu Zhang, Gen Li, Yu Gu, N. Li","doi":"10.48550/arXiv.2212.01441","DOIUrl":null,"url":null,"abstract":"This paper considers multi-agent reinforcement learning (MARL) where the rewards are received after delays and the delay time varies across agents and across time steps. Based on the V-learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays. When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate $\\tilde{\\mathcal{O}}(\\frac{H^3\\sqrt{S\\mathcal{T}_K}}{K}+\\frac{H^3\\sqrt{SA}}{\\sqrt{K}})$ where $K$ is the number of episodes, $H$ is the planning horizon, $S$ is the size of the state space, $A$ is the size of the largest action space, and $\\mathcal{T}_K$ is the measure of total delay formally defined in the paper. Moreover, our algorithm is extended to cases with infinite delays through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Agent Reinforcement Learning with Reward Delays\",\"authors\":\"Yuyang Zhang, Runyu Zhang, Gen Li, Yu Gu, N. Li\",\"doi\":\"10.48550/arXiv.2212.01441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers multi-agent reinforcement learning (MARL) where the rewards are received after delays and the delay time varies across agents and across time steps. Based on the V-learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays. When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate $\\\\tilde{\\\\mathcal{O}}(\\\\frac{H^3\\\\sqrt{S\\\\mathcal{T}_K}}{K}+\\\\frac{H^3\\\\sqrt{SA}}{\\\\sqrt{K}})$ where $K$ is the number of episodes, $H$ is the planning horizon, $S$ is the size of the state space, $A$ is the size of the largest action space, and $\\\\mathcal{T}_K$ is the measure of total delay formally defined in the paper. Moreover, our algorithm is extended to cases with infinite delays through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.01441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.01441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了多智能体强化学习(MARL),其中奖励是在延迟后接收的,延迟时间在不同的智能体和时间步长之间是不同的。在v -学习框架的基础上,提出了有效处理奖励延迟的MARL算法。当延迟有限时,我们的算法达到一个速率为$\tilde{\mathcal{O}}(\frac{H^3\sqrt{S\mathcal{T}_K}}{K}+\frac{H^3\sqrt{SA}}{\sqrt{K}})$的粗相关平衡(CCE),其中$K$为事件数,$H$为规划视界,$S$为状态空间的大小,$A$为最大动作空间的大小,$\mathcal{T}_K$为本文正式定义的总延迟度量。此外,通过奖励跳跃方案将算法扩展到具有无限延迟的情况。它的收敛速度与有限延迟情况相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Agent Reinforcement Learning with Reward Delays
This paper considers multi-agent reinforcement learning (MARL) where the rewards are received after delays and the delay time varies across agents and across time steps. Based on the V-learning framework, this paper proposes MARL algorithms that efficiently deal with reward delays. When the delays are finite, our algorithm reaches a coarse correlated equilibrium (CCE) with rate $\tilde{\mathcal{O}}(\frac{H^3\sqrt{S\mathcal{T}_K}}{K}+\frac{H^3\sqrt{SA}}{\sqrt{K}})$ where $K$ is the number of episodes, $H$ is the planning horizon, $S$ is the size of the state space, $A$ is the size of the largest action space, and $\mathcal{T}_K$ is the measure of total delay formally defined in the paper. Moreover, our algorithm is extended to cases with infinite delays through a reward skipping scheme. It achieves convergence rate similar to the finite delay case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Catching with Whole-Body MPC and Blackbox Policy Learning Time Dependent Inverse Optimal Control using Trigonometric Basis Functions Provably Efficient Generalized Lagrangian Policy Optimization for Safe Multi-Agent Reinforcement Learning Black-Box vs. Gray-Box: A Case Study on Learning Table Tennis Ball Trajectory Prediction with Spin and Impacts Model-based Validation as Probabilistic Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1