生物识别应用周期变换的算法优化与体系结构设计

Lei Wang
{"title":"生物识别应用周期变换的算法优化与体系结构设计","authors":"Lei Wang","doi":"10.1109/SIPS.2005.1579934","DOIUrl":null,"url":null,"abstract":"Presented in this paper is a low-complexity iris identification architecture built upon an enhanced periodicity transform., referred to as the prime subspace periodicity transform (PSPT). The proposed PSPT achieves efficient computation by partitioning periodic subspaces into hierarchical prime subspaces. Data decomposition at prime subspaces can be implemented in a simple manner by exploiting the redundancy in correlation computation. The proposed PSPT establishes a theoretical foundation for our work in developing integrated biometric systems for identity authentication. A PSPT-based iris identification architecture is developed that achieves 32.1% - 56.2% reduction in computational complexity. Experimental results demonstrate an efficient solution for reliable and accurate iris identification. The proposed PSPT algorithm in combination with architecture optimizations address the challenges in single-chip implementation of biometric systems.","PeriodicalId":436123,"journal":{"name":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithm optimization and architectural design of periodicity transform for biometric applications\",\"authors\":\"Lei Wang\",\"doi\":\"10.1109/SIPS.2005.1579934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented in this paper is a low-complexity iris identification architecture built upon an enhanced periodicity transform., referred to as the prime subspace periodicity transform (PSPT). The proposed PSPT achieves efficient computation by partitioning periodic subspaces into hierarchical prime subspaces. Data decomposition at prime subspaces can be implemented in a simple manner by exploiting the redundancy in correlation computation. The proposed PSPT establishes a theoretical foundation for our work in developing integrated biometric systems for identity authentication. A PSPT-based iris identification architecture is developed that achieves 32.1% - 56.2% reduction in computational complexity. Experimental results demonstrate an efficient solution for reliable and accurate iris identification. The proposed PSPT algorithm in combination with architecture optimizations address the challenges in single-chip implementation of biometric systems.\",\"PeriodicalId\":436123,\"journal\":{\"name\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2005.1579934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Signal Processing Systems Design and Implementation, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2005.1579934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于增强周期性变换的低复杂度虹膜识别体系结构。,称为素子空间周期变换(PSPT)。提出的PSPT通过将周期子空间划分为层次素子空间来实现高效的计算。利用相关计算中的冗余性,可以以一种简单的方式实现素子空间上的数据分解。提出的PSPT为我们开发用于身份认证的集成生物识别系统奠定了理论基础。提出了一种基于pspt的虹膜识别体系结构,计算复杂度降低了32.1% ~ 56.2%。实验结果表明,该方法能够实现可靠、准确的虹膜识别。提出的PSPT算法结合架构优化解决了单芯片实现生物识别系统的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm optimization and architectural design of periodicity transform for biometric applications
Presented in this paper is a low-complexity iris identification architecture built upon an enhanced periodicity transform., referred to as the prime subspace periodicity transform (PSPT). The proposed PSPT achieves efficient computation by partitioning periodic subspaces into hierarchical prime subspaces. Data decomposition at prime subspaces can be implemented in a simple manner by exploiting the redundancy in correlation computation. The proposed PSPT establishes a theoretical foundation for our work in developing integrated biometric systems for identity authentication. A PSPT-based iris identification architecture is developed that achieves 32.1% - 56.2% reduction in computational complexity. Experimental results demonstrate an efficient solution for reliable and accurate iris identification. The proposed PSPT algorithm in combination with architecture optimizations address the challenges in single-chip implementation of biometric systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient design of symbol detector for MIMO-OFDM based wireless LANs Scalable transcoding for video transmission over space-time OFDM systems A dynamic normalization technique for decoding LDPC codes A comprehensive energy model and energy-quality evaluation of wireless transceiver front-ends An AS-DSP for forward error correction applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1