方向分布函数的精确和解析贝叶斯推理

S. Sotiropoulos, David E. Jones, L. Bai, T. Kypraios
{"title":"方向分布函数的精确和解析贝叶斯推理","authors":"S. Sotiropoulos, David E. Jones, L. Bai, T. Kypraios","doi":"10.1109/ISBI.2010.5490207","DOIUrl":null,"url":null,"abstract":"Characterizing the fibre orientation uncertainty is essential for quantitative tractography approaches, such as probabilistic tracking. We present an analytic way to perform Bayesian inference on diffusion ODFs from Q-ball imaging data. Drawing a random sample of ODFs reduces to sampling a multivariate t distribution. Assuming that the local ODF maxima provide fibre orientations, a random sample of orientations can then be directly obtained from the ODF sample. Contrary to approximate inference approaches, such as MCMC, our method samples from the exact posterior distribution. Results are illustrated on simulated and human in-vivo data.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact and analytic bayesian inference for orientation distribution functions\",\"authors\":\"S. Sotiropoulos, David E. Jones, L. Bai, T. Kypraios\",\"doi\":\"10.1109/ISBI.2010.5490207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing the fibre orientation uncertainty is essential for quantitative tractography approaches, such as probabilistic tracking. We present an analytic way to perform Bayesian inference on diffusion ODFs from Q-ball imaging data. Drawing a random sample of ODFs reduces to sampling a multivariate t distribution. Assuming that the local ODF maxima provide fibre orientations, a random sample of orientations can then be directly obtained from the ODF sample. Contrary to approximate inference approaches, such as MCMC, our method samples from the exact posterior distribution. Results are illustrated on simulated and human in-vivo data.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

表征纤维取向的不确定性对于定量束束成像方法(如概率跟踪)至关重要。本文提出了一种对q球成像数据的扩散odf进行贝叶斯推理的解析方法。绘制odf的随机样本可简化为对多元t分布进行抽样。假设本地ODF最大值提供了纤维的取向,那么可以直接从ODF样本中获得取向的随机样本。与近似推理方法(如MCMC)相反,我们的方法从精确的后验分布中抽样。结果用模拟数据和人体内数据说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exact and analytic bayesian inference for orientation distribution functions
Characterizing the fibre orientation uncertainty is essential for quantitative tractography approaches, such as probabilistic tracking. We present an analytic way to perform Bayesian inference on diffusion ODFs from Q-ball imaging data. Drawing a random sample of ODFs reduces to sampling a multivariate t distribution. Assuming that the local ODF maxima provide fibre orientations, a random sample of orientations can then be directly obtained from the ODF sample. Contrary to approximate inference approaches, such as MCMC, our method samples from the exact posterior distribution. Results are illustrated on simulated and human in-vivo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1