{"title":"液氮温度下GaAs栅极sisfet的s参数表征","authors":"Y. Kwark, P. Solomon, D. La Tulipe","doi":"10.1109/CORNEL.1989.79837","DOIUrl":null,"url":null,"abstract":"SISFETs where characterized at both room and liquid nitrogen (LN) temperatures to evaluate their dynamic performance. Equivalent circuit parameters obtained from low-frequency parametric measurements were compared to those deduced from S-parameter measurements. The measurements were made on a bifurcated gate structure consisting of two identical gate fingers totalling 70 mu m in width. Microwave characterization of the devices relied on measurement of the S-parameters over a 50-MHz-26-GHz range using an HP8510B network analyzer and cascade probes. The room- and LN-temperature characterization of SISFETs shows no evidence of anomalous behavior. The equivalent circuit parameters deduced from microwave measurements are consistent with those derived from the low-frequency measurements. The low gate leakage, improved g/sub m/, and unchanged gate capacitance result in a high f/sub T/ at LN temperatures, indicating potential for enhanced performance in digital systems.<<ETX>>","PeriodicalId":445524,"journal":{"name":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","volume":"503 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"S-parameter characterization of GaAs gate SISFETs at liquid nitrogen temperatures\",\"authors\":\"Y. Kwark, P. Solomon, D. La Tulipe\",\"doi\":\"10.1109/CORNEL.1989.79837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SISFETs where characterized at both room and liquid nitrogen (LN) temperatures to evaluate their dynamic performance. Equivalent circuit parameters obtained from low-frequency parametric measurements were compared to those deduced from S-parameter measurements. The measurements were made on a bifurcated gate structure consisting of two identical gate fingers totalling 70 mu m in width. Microwave characterization of the devices relied on measurement of the S-parameters over a 50-MHz-26-GHz range using an HP8510B network analyzer and cascade probes. The room- and LN-temperature characterization of SISFETs shows no evidence of anomalous behavior. The equivalent circuit parameters deduced from microwave measurements are consistent with those derived from the low-frequency measurements. The low gate leakage, improved g/sub m/, and unchanged gate capacitance result in a high f/sub T/ at LN temperatures, indicating potential for enhanced performance in digital systems.<<ETX>>\",\"PeriodicalId\":445524,\"journal\":{\"name\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"volume\":\"503 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1989.79837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1989.79837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
S-parameter characterization of GaAs gate SISFETs at liquid nitrogen temperatures
SISFETs where characterized at both room and liquid nitrogen (LN) temperatures to evaluate their dynamic performance. Equivalent circuit parameters obtained from low-frequency parametric measurements were compared to those deduced from S-parameter measurements. The measurements were made on a bifurcated gate structure consisting of two identical gate fingers totalling 70 mu m in width. Microwave characterization of the devices relied on measurement of the S-parameters over a 50-MHz-26-GHz range using an HP8510B network analyzer and cascade probes. The room- and LN-temperature characterization of SISFETs shows no evidence of anomalous behavior. The equivalent circuit parameters deduced from microwave measurements are consistent with those derived from the low-frequency measurements. The low gate leakage, improved g/sub m/, and unchanged gate capacitance result in a high f/sub T/ at LN temperatures, indicating potential for enhanced performance in digital systems.<>