实现相变动力学的氢代码模拟激光烧蚀

M. Povarnitsyn, P. Levashov, K. Khishchenko
{"title":"实现相变动力学的氢代码模拟激光烧蚀","authors":"M. Povarnitsyn, P. Levashov, K. Khishchenko","doi":"10.1117/12.782581","DOIUrl":null,"url":null,"abstract":"We model an interaction of femtosecond laser pulses (800 nm, 100 fs, 10E12-10E14 W/cm2) with metal targets (Al, Au, Cu and Ni). A detailed analysis of laser-induced phase transitions, melting wave propagation and material decomposition is performed using a thermodynamically complete two-temperature equation of state with stable and metastable phases. Material evaporation from the surface of the target and fast melting wave propagation into the bulk are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical fragmentation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are observed but the major output of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results correlate with available experiments.","PeriodicalId":249315,"journal":{"name":"High-Power Laser Ablation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Implementation of kinetics of phase transitions into hydrocode for simulation of laser ablation\",\"authors\":\"M. Povarnitsyn, P. Levashov, K. Khishchenko\",\"doi\":\"10.1117/12.782581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We model an interaction of femtosecond laser pulses (800 nm, 100 fs, 10E12-10E14 W/cm2) with metal targets (Al, Au, Cu and Ni). A detailed analysis of laser-induced phase transitions, melting wave propagation and material decomposition is performed using a thermodynamically complete two-temperature equation of state with stable and metastable phases. Material evaporation from the surface of the target and fast melting wave propagation into the bulk are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical fragmentation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are observed but the major output of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results correlate with available experiments.\",\"PeriodicalId\":249315,\"journal\":{\"name\":\"High-Power Laser Ablation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Power Laser Ablation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.782581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Power Laser Ablation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.782581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们模拟了飞秒激光脉冲(800 nm, 100 fs, 10E12-10E14 W/cm2)与金属靶(Al, Au, Cu和Ni)的相互作用。利用具有稳定相和亚稳相的热力学完全双温状态方程,对激光诱导的相变、熔化波传播和材料分解进行了详细的分析。观察到材料从靶材表面蒸发和快速熔融波向体内传播。稀化时,液相变成亚稳态,其寿命用均匀成核理论估计。在高应变速率下,目标材料的机械破碎也可能是由于空洞的生长和汇合。在我们的模拟中观察到几种烧蚀机制,但发现材料的主要输出来自亚稳液态。它既可以在临界点附近分解成液气混合物,也可以在高应变率和负压下分解成液滴。仿真结果与已有实验结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of kinetics of phase transitions into hydrocode for simulation of laser ablation
We model an interaction of femtosecond laser pulses (800 nm, 100 fs, 10E12-10E14 W/cm2) with metal targets (Al, Au, Cu and Ni). A detailed analysis of laser-induced phase transitions, melting wave propagation and material decomposition is performed using a thermodynamically complete two-temperature equation of state with stable and metastable phases. Material evaporation from the surface of the target and fast melting wave propagation into the bulk are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical fragmentation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are observed but the major output of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results correlate with available experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formation of grooves in SiO2 coated silicon using femtosecond ytterbium DPSS laser Wall-ablative laser-driven in-tube accelerator Industrially scaled pulsed laser deposition based coating techniques for the realization of hemocompatible surfaces for blood contact applications Optically pumped HBr gas laser operating in regions of high atmospheric transmission Spectroscopic characterization of ultrashort laser driven targets incorporating both Boltzmann and particle-in-cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1