Aditya Bhattacharya, Jeroen Ooge, G. Štiglic, K. Verbert
{"title":"监测糖尿病发病风险的指令解释:引入以数据为中心的指令解释和组合,以支持假设探索","authors":"Aditya Bhattacharya, Jeroen Ooge, G. Štiglic, K. Verbert","doi":"10.1145/3581641.3584075","DOIUrl":null,"url":null,"abstract":"Explainable artificial intelligence is increasingly used in machine learning (ML) based decision-making systems in healthcare. However, little research has compared the utility of different explanation methods in guiding healthcare experts for patient care. Moreover, it is unclear how useful, understandable, actionable and trustworthy these methods are for healthcare experts, as they often require technical ML knowledge. This paper presents an explanation dashboard that predicts the risk of diabetes onset and explains those predictions with data-centric, feature-importance, and example-based explanations. We designed an interactive dashboard to assist healthcare experts, such as nurses and physicians, in monitoring the risk of diabetes onset and recommending measures to minimize risk. We conducted a qualitative study with 11 healthcare experts and a mixed-methods study with 45 healthcare experts and 51 diabetic patients to compare the different explanation methods in our dashboard in terms of understandability, usefulness, actionability, and trust. Results indicate that our participants preferred our representation of data-centric explanations that provide local explanations with a global overview over other methods. Therefore, this paper highlights the importance of visually directive data-centric explanation method for assisting healthcare experts to gain actionable insights from patient health records. Furthermore, we share our design implications for tailoring the visual representation of different explanation methods for healthcare experts.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Directive Explanations for Monitoring the Risk of Diabetes Onset: Introducing Directive Data-Centric Explanations and Combinations to Support What-If Explorations\",\"authors\":\"Aditya Bhattacharya, Jeroen Ooge, G. Štiglic, K. Verbert\",\"doi\":\"10.1145/3581641.3584075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable artificial intelligence is increasingly used in machine learning (ML) based decision-making systems in healthcare. However, little research has compared the utility of different explanation methods in guiding healthcare experts for patient care. Moreover, it is unclear how useful, understandable, actionable and trustworthy these methods are for healthcare experts, as they often require technical ML knowledge. This paper presents an explanation dashboard that predicts the risk of diabetes onset and explains those predictions with data-centric, feature-importance, and example-based explanations. We designed an interactive dashboard to assist healthcare experts, such as nurses and physicians, in monitoring the risk of diabetes onset and recommending measures to minimize risk. We conducted a qualitative study with 11 healthcare experts and a mixed-methods study with 45 healthcare experts and 51 diabetic patients to compare the different explanation methods in our dashboard in terms of understandability, usefulness, actionability, and trust. Results indicate that our participants preferred our representation of data-centric explanations that provide local explanations with a global overview over other methods. Therefore, this paper highlights the importance of visually directive data-centric explanation method for assisting healthcare experts to gain actionable insights from patient health records. Furthermore, we share our design implications for tailoring the visual representation of different explanation methods for healthcare experts.\",\"PeriodicalId\":118159,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Intelligent User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581641.3584075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581641.3584075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directive Explanations for Monitoring the Risk of Diabetes Onset: Introducing Directive Data-Centric Explanations and Combinations to Support What-If Explorations
Explainable artificial intelligence is increasingly used in machine learning (ML) based decision-making systems in healthcare. However, little research has compared the utility of different explanation methods in guiding healthcare experts for patient care. Moreover, it is unclear how useful, understandable, actionable and trustworthy these methods are for healthcare experts, as they often require technical ML knowledge. This paper presents an explanation dashboard that predicts the risk of diabetes onset and explains those predictions with data-centric, feature-importance, and example-based explanations. We designed an interactive dashboard to assist healthcare experts, such as nurses and physicians, in monitoring the risk of diabetes onset and recommending measures to minimize risk. We conducted a qualitative study with 11 healthcare experts and a mixed-methods study with 45 healthcare experts and 51 diabetic patients to compare the different explanation methods in our dashboard in terms of understandability, usefulness, actionability, and trust. Results indicate that our participants preferred our representation of data-centric explanations that provide local explanations with a global overview over other methods. Therefore, this paper highlights the importance of visually directive data-centric explanation method for assisting healthcare experts to gain actionable insights from patient health records. Furthermore, we share our design implications for tailoring the visual representation of different explanation methods for healthcare experts.