加速视频分析

Joy Arulraj
{"title":"加速视频分析","authors":"Joy Arulraj","doi":"10.1145/3516431.3516442","DOIUrl":null,"url":null,"abstract":"MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerating Video Analytics\",\"authors\":\"Joy Arulraj\",\"doi\":\"10.1145/3516431.3516442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3516431.3516442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3516431.3516442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

动机。廉价、高质量摄像机的出现导致了视频数据量的快速增长[19,16]。由于过去十年的两个发展,现在可以大规模地自动分析这些视频数据集。首先,研究人员设计了复杂的、计算密集型的深度学习(DL)模型,用于捕获给定视频帧集的内容(例如,特定帧中存在的对象[11])[15]。其次,用于评估这些深度学习模型的硬件加速器的计算能力在过去十年中有所提高(例如,tpu)[8]。我们预计视频的自动化分析将减少分析视频的人工成本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Video Analytics
MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1