{"title":"加速视频分析","authors":"Joy Arulraj","doi":"10.1145/3516431.3516442","DOIUrl":null,"url":null,"abstract":"MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerating Video Analytics\",\"authors\":\"Joy Arulraj\",\"doi\":\"10.1145/3516431.3516442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3516431.3516442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3516431.3516442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOTIVATION. The advent of inexpensive, high-quality cameras has led to a rapid increase in the volume of generated video data [19, 16]. It is now feasible to automatically analyze these video datasets at scale due to two developments over the last decade. First, researchers have designed complex, computationally-intensive deep learning (DL) models that capture the contents of a given set of video frames (e.g., objects present in a particular frame [11]) [15]. Second, the computational capabilities of hardware accelerators for evaluating these DL models have increased over the last decade (e.g., TPUs) [8]. We anticipate that automated analysis of videos will reduce the labor cost of analyzing video