考虑NBTI和PBTI联合作用的衰老感知时序分析

S. Kiamehr, F. Firouzi, M. Tahoori
{"title":"考虑NBTI和PBTI联合作用的衰老感知时序分析","authors":"S. Kiamehr, F. Firouzi, M. Tahoori","doi":"10.1109/ISQED.2013.6523590","DOIUrl":null,"url":null,"abstract":"Transistor aging due to Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) is one of the major reliability issues of VLSI circuits fabricated at nanometer technology nodes. Transistor aging increases the circuit delay over the time and ultimately leads to lifetime reduction of VLSI chips. Accurate aging-aware timing analysis is a key requirement to consider these effects in the design cycle. Our analysis shows that a separate (independent) analysis of different sources of aging leads to significant overestimation of post-aging delay. To overcome the problem of existing methods, we propose a new aging-aware gate delay model that precisely captures the combined effect of different aging sources on delay. Our results obtained from a set of benchmark circuits show that, our proposed gate-delay model estimates the aging-induced Δdelay by 7.8% (translating to 36.0% MTTF) more accurately in comparison to prior techniques. Moreover, we present a flow for integrating the proposed gate delay model with commercial timing analysis tools.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Aging-aware timing analysis considering combined effects of NBTI and PBTI\",\"authors\":\"S. Kiamehr, F. Firouzi, M. Tahoori\",\"doi\":\"10.1109/ISQED.2013.6523590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transistor aging due to Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) is one of the major reliability issues of VLSI circuits fabricated at nanometer technology nodes. Transistor aging increases the circuit delay over the time and ultimately leads to lifetime reduction of VLSI chips. Accurate aging-aware timing analysis is a key requirement to consider these effects in the design cycle. Our analysis shows that a separate (independent) analysis of different sources of aging leads to significant overestimation of post-aging delay. To overcome the problem of existing methods, we propose a new aging-aware gate delay model that precisely captures the combined effect of different aging sources on delay. Our results obtained from a set of benchmark circuits show that, our proposed gate-delay model estimates the aging-induced Δdelay by 7.8% (translating to 36.0% MTTF) more accurately in comparison to prior techniques. Moreover, we present a flow for integrating the proposed gate delay model with commercial timing analysis tools.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

由于偏置温度不稳定性(BTI)和热载流子注入(HCI)引起的晶体管老化是纳米技术节点上制造的超大规模集成电路的主要可靠性问题之一。随着时间的推移,晶体管老化增加了电路延迟,最终导致VLSI芯片的寿命缩短。准确的老化感知时序分析是在设计周期中考虑这些影响的关键要求。我们的分析表明,对不同衰老来源的单独(独立)分析导致对衰老后延迟的显着高估。为了克服现有方法存在的问题,我们提出了一种新的老化感知门延迟模型,该模型可以精确地捕捉不同老化源对延迟的综合影响。我们从一组基准电路中获得的结果表明,与之前的技术相比,我们提出的门延迟模型对老化引起的Δdelay的估计精度提高了7.8%(转换为36.0% MTTF)。此外,我们还提出了将所提出的门延迟模型与商业时序分析工具集成的流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aging-aware timing analysis considering combined effects of NBTI and PBTI
Transistor aging due to Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) is one of the major reliability issues of VLSI circuits fabricated at nanometer technology nodes. Transistor aging increases the circuit delay over the time and ultimately leads to lifetime reduction of VLSI chips. Accurate aging-aware timing analysis is a key requirement to consider these effects in the design cycle. Our analysis shows that a separate (independent) analysis of different sources of aging leads to significant overestimation of post-aging delay. To overcome the problem of existing methods, we propose a new aging-aware gate delay model that precisely captures the combined effect of different aging sources on delay. Our results obtained from a set of benchmark circuits show that, our proposed gate-delay model estimates the aging-induced Δdelay by 7.8% (translating to 36.0% MTTF) more accurately in comparison to prior techniques. Moreover, we present a flow for integrating the proposed gate delay model with commercial timing analysis tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1