经导管心脏瓣膜置换术后瓣膜迁移及栓塞风险评估

S. J. Hill, Alistair A. Young, R. Rajani, A. Vecchi
{"title":"经导管心脏瓣膜置换术后瓣膜迁移及栓塞风险评估","authors":"S. J. Hill, Alistair A. Young, R. Rajani, A. Vecchi","doi":"10.22489/CinC.2022.428","DOIUrl":null,"url":null,"abstract":"Transcatheter Valve Embolization and Migration (TVEM) is a rare, but catastrophic event where the prosthesis moves due to heamodynamic forces acting on the frame. TVEM following Transcatheter Mitral Valve Replacement (TMVR) is largely undocumented. Haemodynamic forces cannot be estimated during pre-procedural planning and conventional imaging does not allow to compute them after replacement. To shed light on this issue, this study focusses on modelling haemodynamics after TMVR in 3 patients with Mitral Annular Calcification (MAC) known as Valve-in-MAC (ViMAC). Three-dimensional flow simulations are performed using the computational fluid dynamics (CFD) package STARCCM+. Results of the simulation are processed to compute the fluid forces acting on the device and pressure gradients in the left ventricular outflow tract (LVOT). Anatomical measurements are performed on CT data sets to assess the mitral valve size and shape, the extent and location of the calcification and the size of the LVOT after implantation. Our results show that the force distribution on the device is largely influenced by LVOT anatomy and contraction patterns.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Transcatheter Heart Valve Migration and Embolization Risk Following Valve-in-MAC\",\"authors\":\"S. J. Hill, Alistair A. Young, R. Rajani, A. Vecchi\",\"doi\":\"10.22489/CinC.2022.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcatheter Valve Embolization and Migration (TVEM) is a rare, but catastrophic event where the prosthesis moves due to heamodynamic forces acting on the frame. TVEM following Transcatheter Mitral Valve Replacement (TMVR) is largely undocumented. Haemodynamic forces cannot be estimated during pre-procedural planning and conventional imaging does not allow to compute them after replacement. To shed light on this issue, this study focusses on modelling haemodynamics after TMVR in 3 patients with Mitral Annular Calcification (MAC) known as Valve-in-MAC (ViMAC). Three-dimensional flow simulations are performed using the computational fluid dynamics (CFD) package STARCCM+. Results of the simulation are processed to compute the fluid forces acting on the device and pressure gradients in the left ventricular outflow tract (LVOT). Anatomical measurements are performed on CT data sets to assess the mitral valve size and shape, the extent and location of the calcification and the size of the LVOT after implantation. Our results show that the force distribution on the device is largely influenced by LVOT anatomy and contraction patterns.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经导管瓣膜栓塞和移位(TVEM)是一种罕见但灾难性的事件,其中假体由于作用在框架上的血流动力而移动。经导管二尖瓣置换术(TMVR)后的TVEM在很大程度上没有文献记载。在手术前的计划中无法估计血流动力学力,而传统的成像也不允许在置换后计算血流动力学力。为了阐明这一问题,本研究的重点是模拟3例二尖瓣环钙化(MAC)(俗称MAC中的瓣膜(ViMAC))患者TMVR后的血流动力学。使用计算流体动力学(CFD)软件包STARCCM+进行三维流动模拟。对模拟结果进行处理,计算作用在装置上的流体力和左心室流出道(LVOT)的压力梯度。在CT数据集上进行解剖测量,以评估二尖瓣的大小和形状,钙化的程度和位置以及植入后LVOT的大小。我们的研究结果表明,装置上的力分布在很大程度上受LVOT解剖和收缩模式的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Transcatheter Heart Valve Migration and Embolization Risk Following Valve-in-MAC
Transcatheter Valve Embolization and Migration (TVEM) is a rare, but catastrophic event where the prosthesis moves due to heamodynamic forces acting on the frame. TVEM following Transcatheter Mitral Valve Replacement (TMVR) is largely undocumented. Haemodynamic forces cannot be estimated during pre-procedural planning and conventional imaging does not allow to compute them after replacement. To shed light on this issue, this study focusses on modelling haemodynamics after TMVR in 3 patients with Mitral Annular Calcification (MAC) known as Valve-in-MAC (ViMAC). Three-dimensional flow simulations are performed using the computational fluid dynamics (CFD) package STARCCM+. Results of the simulation are processed to compute the fluid forces acting on the device and pressure gradients in the left ventricular outflow tract (LVOT). Anatomical measurements are performed on CT data sets to assess the mitral valve size and shape, the extent and location of the calcification and the size of the LVOT after implantation. Our results show that the force distribution on the device is largely influenced by LVOT anatomy and contraction patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1