神经元的分割和光学编程神经突生长的测量:通过贝叶斯阈值快速自动化

P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri
{"title":"神经元的分割和光学编程神经突生长的测量:通过贝叶斯阈值快速自动化","authors":"P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri","doi":"10.1109/NER.2015.7146794","DOIUrl":null,"url":null,"abstract":"The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation of neuron and measurement of optically programed neurite growth: Fast automation via Bayesian thresholding\",\"authors\":\"P. Reddy, Saurabh Shukla, A. Karunarathne, S. Jana, L. Giri\",\"doi\":\"10.1109/NER.2015.7146794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞形态的多变性和复杂的动态性使得在显微图像中自动分割神经元是一项相当困难的任务。为了充分利用现代计算能力对此类生物图像进行大规模分析,自动化是必要的。在本文中,我们提出了一种从周围环境中分割单个细胞的自动化方法,并在海马神经元在神经突起始和延伸期间的延时图像上进行了测试。注意到基于活动轮廓的方法通常是准确的,但计算成本高且速度慢,我们提出了一种将Chan-Vese活动轮廓分割与贝叶斯阈值相结合的快速混合方法,用于神经元的分割和神经突生长动态的测量。我们的方法证明,与纯Chan-Vese分割相比,增长动态的量化速度快了200倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation of neuron and measurement of optically programed neurite growth: Fast automation via Bayesian thresholding
The variability and complex dynamics of cell morphology make the automated segmentation of neurons in microscopic images a rather difficult task. To fully leverage modern computational power in large-scale analysis of such biological images, automation is necessary. In this paper, we present an automated approach to segmenting individual cells from their surroundings, and test it on time-lapse images of hipppocampal neurons during neurite initiation and extension. Noting that active contour based methods are usually accurate, but computationally expensive and slow, we propose a fast hybrid approach that combines Chan-Vese active contour segmentation with Bayesian thresholding for segmentation of neuron and measurement of neurite growth dynamics. Our approach demonstrated upto two-hundred-fold faster quantification of growth dynamics compared to the pure Chan-Vese segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1