与欧几里得运动群有关的一种测不准原理

J. Christensen, H. Schlichtkrull
{"title":"与欧几里得运动群有关的一种测不准原理","authors":"J. Christensen, H. Schlichtkrull","doi":"10.3318/PRIA.2004.104.2.249","DOIUrl":null,"url":null,"abstract":"We show that a well-known uncertainty principle for functions on the circle can be derived from an uncertainty principle for the Euclidean motion group. 1. Uncertainty principles related to Lie group representations Let G be a Lie group with Lie algebra g, and let (n, H) be a unitary representation of G. Then each element Xe g generates a closed, skew-adjoint operator n(X) on H by n(exptX)x-x n(X)x = hm '-o t with domain D(n(X)) consisting of all xe H for which the limit exists. The uncertainty principle related to n says that for operators generated by X, Y and [X, Y] the following holds ''n(X)x''''n(Y)x''>^'(n([X,Y])x,x)' for all xeD(n(X))nD(n(Y))nD(n([X, Y])). We would like to advocate this as a natural way to achieve uncertainty principles. It was first proposed in Kraus [4] for Lie groups with three dimensions or fewer, and the dimension constraint was recently removed by Christensen in [2]. For example, the classical Heisenberg uncertainty principle for functions on Un is easily derived in this way from the Schrodinger representation of the Heisenberg group (see [3, p. 212]). It is the purpose of this note to point out that the uncertainty principle for the circle, which was motivated by Breitenberger [1] and further discussed in [5; 6; 7; 8; 9; 10] is obtained similarly from the principal series representation of the Euclidean motion group of U2. * Corresponding author; e-mail: vepjan@math.ku.dk Mathematical Proceedings of the Royal Irish Academy, 104A (2), 249-252 (2004) © Royal Irish Academy This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 250 Mathematical Proceedings of the Royal Irish Academy 2. The Euclidean motion group and a unitary representation Let G be the Euclidean motion group G=j(r,z)=(^or ^|rER,zecj Its Lie algebra is fl={(j j)|reR,zec} Let H be the Hubert space H = L2(J) of square integrable functions on the circle T = {s e C| 's' = 1}, with inner product (/\", g) = JT f(t)g(t)dt. As in [1 1, chapter V] the following defines a unitary representation of G on ^i: 7Tfl(r, z)/(?) = ^Re(z^/(^-^), (j e T) where a e C. For simplicity we assume in the following that a = l, which is sufficient for our purpose. The representation n' will be denoted n. 3. Operators generated from the representation We now generate three operators from elements of the Lie algebra g. Let X,YU r2egbe *-G s), \".-(s i) ^(o ?) then exp(ijr)=^ J), exParl)=^ i) and QxV(tY2)=(^ ^ and we then get 7t(X)f(s) = lim i-+0 / i->0 ? where /'(a) = jtf{eus). This operator has domain {/eL2(T)|?h-»/V0 absolutely continuous with /7 e L2(T)} (3.1) Also rv^^ v hm 1*0, t)f(s) f(s) hm e^s)fis) fis) . ,_, . 7t( rv^^ Fj)/^) = v hm i-o t t-+o t and /VUM r hm 40, iY)/(j) /(j) hm r e^fis) fis) . . . _. _ . . ni /VUM Y2)fis) = hm r t^o i /->o t when s=e10 . Both of these operators are defined on H. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms Christensen and Schlichtkrull Euclidean motion group 251 4. The uncertainty principle Since [X,YX] = Y21 [X,Y2]=-Yl the uncertainty principle gives 1(7*7, )/,/>| = '(n([X, Y2])fJ)' The first author would like to thank the people at NUI Galway for the help and friendliness he received while writing his thesis. References [1] E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Foundations of Physics 15 (1985), 353-64. [2] J.G. Christensen, The uncertainty principle for operators determined by Lie groups, to appear in Journal of Fourier Analysis and Applications 10 (2004), 541-4. [3] G.B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, Journal of Fourier Analysis and Applications 3 (1997), 207-38. [4] K. Kraus, A further remark on uncertainty relations, Zeitschrift fur Physik 201 (1967), 134-41. [5] F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Applied and Computational Harmonic Analysis 3 (1996), 40-56. [6] J. Prestin and E. Quak, Optimal functions for a periodic uncertainty principle and multiresolution analysis, The Proceedings of the Edinburgh Mathematical Society 42 (1999), 225-42. [7] J. Prestin, E. Quak, H. Rauhut and K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line, Journal of Fourier Analysis and Applications 9 (2003), 387-409. [8] H. Rauhut, An uncertainty principle for periodic functions, Diplomarbeit, Technische Universitat Munchen, 2001. Available online at: http://www.ma.tum.de/gkaam/personen/rauhut/ This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 252 Mathematical Proceedings of the Royal Irish Academy [9] M. Rosier and M. Voit, An uncertainty principle for ultraspherical expansions, Journal of Mathematical Analysis and Applications 209 (1997), 624-34. [10] K.K. Selig, Uncertainty principles revisited, Electronic Transactions on Numerical Analysis 14 (2002), 164-76 (electronic). [1 1] M. Sugiura, Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44, North-Holland Publishing Co., 1990. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN UNCERTAINTY PRINCIPLE RELATED TO THE EUCLIDEAN MOTION GROUP\",\"authors\":\"J. Christensen, H. Schlichtkrull\",\"doi\":\"10.3318/PRIA.2004.104.2.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a well-known uncertainty principle for functions on the circle can be derived from an uncertainty principle for the Euclidean motion group. 1. Uncertainty principles related to Lie group representations Let G be a Lie group with Lie algebra g, and let (n, H) be a unitary representation of G. Then each element Xe g generates a closed, skew-adjoint operator n(X) on H by n(exptX)x-x n(X)x = hm '-o t with domain D(n(X)) consisting of all xe H for which the limit exists. The uncertainty principle related to n says that for operators generated by X, Y and [X, Y] the following holds ''n(X)x''''n(Y)x''>^'(n([X,Y])x,x)' for all xeD(n(X))nD(n(Y))nD(n([X, Y])). We would like to advocate this as a natural way to achieve uncertainty principles. It was first proposed in Kraus [4] for Lie groups with three dimensions or fewer, and the dimension constraint was recently removed by Christensen in [2]. For example, the classical Heisenberg uncertainty principle for functions on Un is easily derived in this way from the Schrodinger representation of the Heisenberg group (see [3, p. 212]). It is the purpose of this note to point out that the uncertainty principle for the circle, which was motivated by Breitenberger [1] and further discussed in [5; 6; 7; 8; 9; 10] is obtained similarly from the principal series representation of the Euclidean motion group of U2. * Corresponding author; e-mail: vepjan@math.ku.dk Mathematical Proceedings of the Royal Irish Academy, 104A (2), 249-252 (2004) © Royal Irish Academy This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 250 Mathematical Proceedings of the Royal Irish Academy 2. The Euclidean motion group and a unitary representation Let G be the Euclidean motion group G=j(r,z)=(^or ^|rER,zecj Its Lie algebra is fl={(j j)|reR,zec} Let H be the Hubert space H = L2(J) of square integrable functions on the circle T = {s e C| 's' = 1}, with inner product (/\\\", g) = JT f(t)g(t)dt. As in [1 1, chapter V] the following defines a unitary representation of G on ^i: 7Tfl(r, z)/(?) = ^Re(z^/(^-^), (j e T) where a e C. For simplicity we assume in the following that a = l, which is sufficient for our purpose. The representation n' will be denoted n. 3. Operators generated from the representation We now generate three operators from elements of the Lie algebra g. Let X,YU r2egbe *-G s), \\\".-(s i) ^(o ?) then exp(ijr)=^ J), exParl)=^ i) and QxV(tY2)=(^ ^ and we then get 7t(X)f(s) = lim i-+0 / i->0 ? where /'(a) = jtf{eus). This operator has domain {/eL2(T)|?h-»/V0 absolutely continuous with /7 e L2(T)} (3.1) Also rv^^ v hm 1*0, t)f(s) f(s) hm e^s)fis) fis) . ,_, . 7t( rv^^ Fj)/^) = v hm i-o t t-+o t and /VUM r hm 40, iY)/(j) /(j) hm r e^fis) fis) . . . _. _ . . ni /VUM Y2)fis) = hm r t^o i /->o t when s=e10 . Both of these operators are defined on H. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms Christensen and Schlichtkrull Euclidean motion group 251 4. The uncertainty principle Since [X,YX] = Y21 [X,Y2]=-Yl the uncertainty principle gives 1(7*7, )/,/>| = '(n([X, Y2])fJ)' The first author would like to thank the people at NUI Galway for the help and friendliness he received while writing his thesis. References [1] E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Foundations of Physics 15 (1985), 353-64. [2] J.G. Christensen, The uncertainty principle for operators determined by Lie groups, to appear in Journal of Fourier Analysis and Applications 10 (2004), 541-4. [3] G.B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, Journal of Fourier Analysis and Applications 3 (1997), 207-38. [4] K. Kraus, A further remark on uncertainty relations, Zeitschrift fur Physik 201 (1967), 134-41. [5] F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Applied and Computational Harmonic Analysis 3 (1996), 40-56. [6] J. Prestin and E. Quak, Optimal functions for a periodic uncertainty principle and multiresolution analysis, The Proceedings of the Edinburgh Mathematical Society 42 (1999), 225-42. [7] J. Prestin, E. Quak, H. Rauhut and K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line, Journal of Fourier Analysis and Applications 9 (2003), 387-409. [8] H. Rauhut, An uncertainty principle for periodic functions, Diplomarbeit, Technische Universitat Munchen, 2001. Available online at: http://www.ma.tum.de/gkaam/personen/rauhut/ This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 252 Mathematical Proceedings of the Royal Irish Academy [9] M. Rosier and M. Voit, An uncertainty principle for ultraspherical expansions, Journal of Mathematical Analysis and Applications 209 (1997), 624-34. [10] K.K. Selig, Uncertainty principles revisited, Electronic Transactions on Numerical Analysis 14 (2002), 164-76 (electronic). [1 1] M. Sugiura, Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44, North-Holland Publishing Co., 1990. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2004.104.2.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2004.104.2.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个众所周知的圆上函数的测不准原理可以由欧几里得运动群的测不准原理导出。1. 设G是李代数G的李群,设(n, H)是G的酉表示,则每个元素Xe G在H × n(exptX) X - X n(X) X = hm '-o t上生成一个封闭的斜伴随算子n(X),其域D(n(X))由存在极限的所有Xe H组成。与n相关的不确定性原理表明,对于由X,Y和[X,Y]生成的算子,下面的式子成立“n(X) X ''''n(Y) X”>^'(n([X,Y]) X, X) '对于所有xeD(n(X))nD(n(n(Y))nD(n([X, Y]))。我们主张这是实现不确定性原理的一种自然方式。Kraus[4]首先提出了三维或更少维度的李群,最近Christensen在[2]中去掉了维度约束。例如,Un上函数的经典海森堡测不准原理很容易以这种方式从海森堡群的薛定谔表示中推导出来(见[3,第212页])。本文的目的是指出,由Breitenberger[1]提出并在[5]中进一步讨论的圆的不确定性原理;6;7;8;9;10]由U2的欧几里得运动群的主级数表示得到。*通讯作者;e-mail: vepjan@math.ku.dk皇家爱尔兰学院数学学报,104A(2), 249-252(2004)©皇家爱尔兰学院此内容下载自157.55.39.58星期二,2016年11月15日04:05:14 UTC所有使用受http://about.jstor.org/terms 250皇家爱尔兰学院数学学报2。设G为欧几里得运动群G=j(r,z)=(^or ^|rER,zecj)它的李代数为fl={(j j)| rER,zecj}设H为圆T ={se C´'s' = 1}上的平方可积函数的Hubert空间H = L2(j),内积(/",G)= JT f(T) G (T)dt。如在第五章[11]中所述,下面定义了G在^i上的一个幺正表示:7Tfl(r, z)/(?) = ^Re(z^/(^-^), (j e T),其中a e c。为了简单起见,我们在下面假设a = l,这对我们的目的来说已经足够了。表示形式n'记为n。我们现在从李代数g的元素生成三个算子。设X,YU r2egbe *-G),”。- (s i) ^ (o ?)然后exp (ijr) = ^ J), exParl) = ^我)和QxV (tY2) =(^ ^然后我们得到7 t f (s) (X) =我lim - + 0 / - > 0 ?其中/'(a) = jtf{eus)。此运算符的域为{/eL2(T)|?h-»/V0绝对连续与/7 e L2(T)}(3.1)也是rv^^ v hm 1*0, T) f(s) f(s) hm e^s)fis (fis)。, _。7t(rv^^ Fj)/^) = v hm i-o t t-+o t和/VUM r hm 40, iY)/(j) /(j) hm r e^fis) fis…_。……当s=e10时,i /VUM Y2)fis = hm r t^o i /->o t。这两个算子都是在h上定义的。该内容从157.55.39.58下载于2016年11月15日星期二04:05:14 UTC。所有的使用都符合http://about.jstor.org/terms Christensen和Schlichtkrull欧氏运动组251。不确定性原理由于[X,YX] = Y21 [X,Y2]=-Yl,不确定性原理给出1(7*7,)/,/>| = '(n([X, Y2])fJ)',第一作者要感谢NUI Galway的人们在撰写论文时给予的帮助和友好。[1] E. Breitenberger,角度观测的不确定性测度和不确定性关系,物理基础15(1985),353-64。[2] J.G. Christensen,李群算子的不确定性原理,出现在傅里叶分析与应用10(2004),541- 541。[3]王志强,李志强,不确定性原理的数学研究,傅里叶分析与应用3(1997),207-38。[4]王晓明,王晓明。不确定性关系的研究进展。物理学报,2016(1),34-41。[5]王志强,周志强,周志强。基于小波变换的周期基函数分析,计算机工程学报(4),2003,31 - 34。[6]王志强,周志强,周志强,周期不确定性原理与多分辨率分析的最优函数,数学学报,42(1999),425 - 425。[7]王晓明,王晓明,王晓明,关于圆上函数与实线上函数的不确定原理,傅里叶分析与应用9(2003),387-409。[8]胡晓明,周晓明,周晓明,周晓明,周晓明,周晓明,周晓明,周晓明。可在线获取:http://www.ma.tum.de/gkaam/personen/rauhut/此内容于2016年11月15日星期二从157.55.39.58下载,04:05:14 UTC所有使用均须遵守http://about.jstor.org/terms 252爱尔兰皇家科学院数学学报[9]M. Rosier和M. Voit,超球膨胀的不确定性原理,数学分析与应用学报209(1997),624-34。[10]株式会社
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AN UNCERTAINTY PRINCIPLE RELATED TO THE EUCLIDEAN MOTION GROUP
We show that a well-known uncertainty principle for functions on the circle can be derived from an uncertainty principle for the Euclidean motion group. 1. Uncertainty principles related to Lie group representations Let G be a Lie group with Lie algebra g, and let (n, H) be a unitary representation of G. Then each element Xe g generates a closed, skew-adjoint operator n(X) on H by n(exptX)x-x n(X)x = hm '-o t with domain D(n(X)) consisting of all xe H for which the limit exists. The uncertainty principle related to n says that for operators generated by X, Y and [X, Y] the following holds ''n(X)x''''n(Y)x''>^'(n([X,Y])x,x)' for all xeD(n(X))nD(n(Y))nD(n([X, Y])). We would like to advocate this as a natural way to achieve uncertainty principles. It was first proposed in Kraus [4] for Lie groups with three dimensions or fewer, and the dimension constraint was recently removed by Christensen in [2]. For example, the classical Heisenberg uncertainty principle for functions on Un is easily derived in this way from the Schrodinger representation of the Heisenberg group (see [3, p. 212]). It is the purpose of this note to point out that the uncertainty principle for the circle, which was motivated by Breitenberger [1] and further discussed in [5; 6; 7; 8; 9; 10] is obtained similarly from the principal series representation of the Euclidean motion group of U2. * Corresponding author; e-mail: vepjan@math.ku.dk Mathematical Proceedings of the Royal Irish Academy, 104A (2), 249-252 (2004) © Royal Irish Academy This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 250 Mathematical Proceedings of the Royal Irish Academy 2. The Euclidean motion group and a unitary representation Let G be the Euclidean motion group G=j(r,z)=(^or ^|rER,zecj Its Lie algebra is fl={(j j)|reR,zec} Let H be the Hubert space H = L2(J) of square integrable functions on the circle T = {s e C| 's' = 1}, with inner product (/", g) = JT f(t)g(t)dt. As in [1 1, chapter V] the following defines a unitary representation of G on ^i: 7Tfl(r, z)/(?) = ^Re(z^/(^-^), (j e T) where a e C. For simplicity we assume in the following that a = l, which is sufficient for our purpose. The representation n' will be denoted n. 3. Operators generated from the representation We now generate three operators from elements of the Lie algebra g. Let X,YU r2egbe *-G s), ".-(s i) ^(o ?) then exp(ijr)=^ J), exParl)=^ i) and QxV(tY2)=(^ ^ and we then get 7t(X)f(s) = lim i-+0 / i->0 ? where /'(a) = jtf{eus). This operator has domain {/eL2(T)|?h-»/V0 absolutely continuous with /7 e L2(T)} (3.1) Also rv^^ v hm 1*0, t)f(s) f(s) hm e^s)fis) fis) . ,_, . 7t( rv^^ Fj)/^) = v hm i-o t t-+o t and /VUM r hm 40, iY)/(j) /(j) hm r e^fis) fis) . . . _. _ . . ni /VUM Y2)fis) = hm r t^o i /->o t when s=e10 . Both of these operators are defined on H. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms Christensen and Schlichtkrull Euclidean motion group 251 4. The uncertainty principle Since [X,YX] = Y21 [X,Y2]=-Yl the uncertainty principle gives 1(7*7, )/,/>| = '(n([X, Y2])fJ)' The first author would like to thank the people at NUI Galway for the help and friendliness he received while writing his thesis. References [1] E. Breitenberger, Uncertainty measures and uncertainty relations for angle observables, Foundations of Physics 15 (1985), 353-64. [2] J.G. Christensen, The uncertainty principle for operators determined by Lie groups, to appear in Journal of Fourier Analysis and Applications 10 (2004), 541-4. [3] G.B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, Journal of Fourier Analysis and Applications 3 (1997), 207-38. [4] K. Kraus, A further remark on uncertainty relations, Zeitschrift fur Physik 201 (1967), 134-41. [5] F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Applied and Computational Harmonic Analysis 3 (1996), 40-56. [6] J. Prestin and E. Quak, Optimal functions for a periodic uncertainty principle and multiresolution analysis, The Proceedings of the Edinburgh Mathematical Society 42 (1999), 225-42. [7] J. Prestin, E. Quak, H. Rauhut and K. Selig, On the connection of uncertainty principles for functions on the circle and on the real line, Journal of Fourier Analysis and Applications 9 (2003), 387-409. [8] H. Rauhut, An uncertainty principle for periodic functions, Diplomarbeit, Technische Universitat Munchen, 2001. Available online at: http://www.ma.tum.de/gkaam/personen/rauhut/ This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms 252 Mathematical Proceedings of the Royal Irish Academy [9] M. Rosier and M. Voit, An uncertainty principle for ultraspherical expansions, Journal of Mathematical Analysis and Applications 209 (1997), 624-34. [10] K.K. Selig, Uncertainty principles revisited, Electronic Transactions on Numerical Analysis 14 (2002), 164-76 (electronic). [1 1] M. Sugiura, Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44, North-Holland Publishing Co., 1990. This content downloaded from 157.55.39.58 on Tue, 15 Nov 2016 04:05:14 UTC All use subject to http://about.jstor.org/terms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances In Exponential Random Graph Modelling Flux Limitation Mechanisms Arising in Multiscale Modelling of Cancer Invasion The Bergmann-Shilov boundary of a Bounded Symmetric Domain A Characterisation of the Quaternions Using Commutators Parallelogram Frameworks and Flexible Quasicrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1