{"title":"经济:使用掩蔽的集成协作学习","authors":"Lars Van De Kamp, Chibuike Ugwuoke, Z. Erkin","doi":"10.1109/PIMRCW.2019.8880822","DOIUrl":null,"url":null,"abstract":"In a society where digital data has become ubiquitous and has been projected to continue in this trajectory for the foreseeable future, machine learning has become a dependable tool to aid in analyzing these big datasets. However, where the data or machine learning algorithms are considered to be privacy-sensitive, one is then faced with the challenge of preserving the utility of machine learning in a privacy-preserving setting. In this paper, we focus on a use case where decentralized parties have privately owned machine learning algorithms, and would want to jointly generate a public model while not violating the privacy of their individual models, and data. We present ECONoMy: a privacy-preserving protocol that supports collaborative learning using an ensemble technique. Set in an honest-but-curious security model, ECONoMy is lightweight and provides efficiency and privacy in settings with large participant such as with IoT devices.","PeriodicalId":158659,"journal":{"name":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ECONoMy: Ensemble Collaborative Learning Using Masking\",\"authors\":\"Lars Van De Kamp, Chibuike Ugwuoke, Z. Erkin\",\"doi\":\"10.1109/PIMRCW.2019.8880822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a society where digital data has become ubiquitous and has been projected to continue in this trajectory for the foreseeable future, machine learning has become a dependable tool to aid in analyzing these big datasets. However, where the data or machine learning algorithms are considered to be privacy-sensitive, one is then faced with the challenge of preserving the utility of machine learning in a privacy-preserving setting. In this paper, we focus on a use case where decentralized parties have privately owned machine learning algorithms, and would want to jointly generate a public model while not violating the privacy of their individual models, and data. We present ECONoMy: a privacy-preserving protocol that supports collaborative learning using an ensemble technique. Set in an honest-but-curious security model, ECONoMy is lightweight and provides efficiency and privacy in settings with large participant such as with IoT devices.\",\"PeriodicalId\":158659,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRCW.2019.8880822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRCW.2019.8880822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ECONoMy: Ensemble Collaborative Learning Using Masking
In a society where digital data has become ubiquitous and has been projected to continue in this trajectory for the foreseeable future, machine learning has become a dependable tool to aid in analyzing these big datasets. However, where the data or machine learning algorithms are considered to be privacy-sensitive, one is then faced with the challenge of preserving the utility of machine learning in a privacy-preserving setting. In this paper, we focus on a use case where decentralized parties have privately owned machine learning algorithms, and would want to jointly generate a public model while not violating the privacy of their individual models, and data. We present ECONoMy: a privacy-preserving protocol that supports collaborative learning using an ensemble technique. Set in an honest-but-curious security model, ECONoMy is lightweight and provides efficiency and privacy in settings with large participant such as with IoT devices.