相干信号的准确到达方向估计

Jia-jia Jiang, F. Duan, Yan-chao Li
{"title":"相干信号的准确到达方向估计","authors":"Jia-jia Jiang, F. Duan, Yan-chao Li","doi":"10.1109/ICNC.2014.6975956","DOIUrl":null,"url":null,"abstract":"An accurate direction-of-arrival (DOA) estimation algorithm is proposed with a uniform linear array (ULA) when coherent and uncorrelated signals coexist. By selecting the rank from the covariance matrix of array output, we first reconstruct a Toeplitz matrix so as to achieve the objective of decorrelation similar to reference [2]. And then we proposed a spectrum of improved MUSIC (named as SI-MUSIC) method to achieve a super-resolution angular estimation. Moreover, the angular resolution of the I-MUSIC method can be adjust according to the practical requirement. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accurate direction-of-arrival estimation for coherent signals\",\"authors\":\"Jia-jia Jiang, F. Duan, Yan-chao Li\",\"doi\":\"10.1109/ICNC.2014.6975956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate direction-of-arrival (DOA) estimation algorithm is proposed with a uniform linear array (ULA) when coherent and uncorrelated signals coexist. By selecting the rank from the covariance matrix of array output, we first reconstruct a Toeplitz matrix so as to achieve the objective of decorrelation similar to reference [2]. And then we proposed a spectrum of improved MUSIC (named as SI-MUSIC) method to achieve a super-resolution angular estimation. Moreover, the angular resolution of the I-MUSIC method can be adjust according to the practical requirement. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种相干和不相关信号同时存在的均匀线阵到达方向(DOA)精确估计算法。通过从数组输出的协方差矩阵中选择秩,我们首先重构一个Toeplitz矩阵,从而达到与参考文献[2]相似的去相关目的。在此基础上,提出了一种改进的光谱MUSIC (SI-MUSIC)方法,实现了超分辨率的角度估计。此外,I-MUSIC方法的角度分辨率可以根据实际需要进行调整。仿真结果验证了该算法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate direction-of-arrival estimation for coherent signals
An accurate direction-of-arrival (DOA) estimation algorithm is proposed with a uniform linear array (ULA) when coherent and uncorrelated signals coexist. By selecting the rank from the covariance matrix of array output, we first reconstruct a Toeplitz matrix so as to achieve the objective of decorrelation similar to reference [2]. And then we proposed a spectrum of improved MUSIC (named as SI-MUSIC) method to achieve a super-resolution angular estimation. Moreover, the angular resolution of the I-MUSIC method can be adjust according to the practical requirement. Simulation results demonstrate the effectiveness and performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph based K-nearest neighbor minutiae clustering for fingerprint recognition Applications of artificial intelligence technologies in credit scoring: A survey of literature Construction of linear dynamic gene regulatory network based on feedforward neural network A new dynamic clustering method based on nuclear field A multi-objective ant colony optimization algorithm based on the Physarum-inspired mathematical model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1