葡萄牙语文本匿名化的递归神经网络模型评估

Antônio M. R. Franco, L. Oliveira
{"title":"葡萄牙语文本匿名化的递归神经网络模型评估","authors":"Antônio M. R. Franco, L. Oliveira","doi":"10.5753/sbseg.2019.13992","DOIUrl":null,"url":null,"abstract":"Currently, there are several approaches to provide anonymity on the Internet. However, one can still identify anonymous users through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when accurately identify the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our results show a trade-off between the obfuscation level and the text semantics.","PeriodicalId":221963,"journal":{"name":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avaliação de Modelos de Redes Neurais Recorrentes para Anonimização de Textos em Português\",\"authors\":\"Antônio M. R. Franco, L. Oliveira\",\"doi\":\"10.5753/sbseg.2019.13992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there are several approaches to provide anonymity on the Internet. However, one can still identify anonymous users through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when accurately identify the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our results show a trade-off between the obfuscation level and the text semantics.\",\"PeriodicalId\":221963,\"journal\":{\"name\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbseg.2019.13992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2019.13992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,有几种方法可以在互联网上提供匿名。然而,人们仍然可以通过他们的写作风格来识别匿名用户。随着神经网络和自然语言处理研究的进步,分类器在准确识别文本作者方面的成功率越来越高。另一方面,使用递归神经网络自动生成混淆文本的新方法也出现了,以对抗匿名对手。在这项工作中,我们评估了两种使用神经网络生成混淆文本的方法。在我们的实验中,我们比较了两种技术在删除文本的风格属性和保留其原始语义时的效率。我们的结果显示了混淆水平和文本语义之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Avaliação de Modelos de Redes Neurais Recorrentes para Anonimização de Textos em Português
Currently, there are several approaches to provide anonymity on the Internet. However, one can still identify anonymous users through their writing style. With the advances in neural network and natural language processing research, the success of a classifier when accurately identify the author of a text is growing. On the other hand, new approaches that use recurrent neural networks for automatic generation of obfuscated texts have also arisen to fight anonymity adversaries. In this work, we evaluate two approaches that use neural networks to generate obfuscated texts. In our experiments, we compared the efficiency of both techniques when removing the stylistic attributes of a text and preserving its original semantics. Our results show a trade-off between the obfuscation level and the text semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Secure White Box Implementation of AES Against First Order DCA Defacebot: Uma ferramenta de detecção e notificação de ataques de desfiguração utilizando mecanismos gerenciados por bot de aplicativo de mensagens instantâneas Uma abordagem como ferramenta de apoio ao CSIRT Mitigando os Efeitos de GAN em Classificação de Imagens com CNN An evaluation of a three-modal hand-based database to forensic-based gender recognition Aceleração de Assinaturas Baseadas em Atributos para Internet das Coisas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1