氧化物等离子体处理系统中原位粒子监测系统的实现

G. Kong, C. Stager, A. C. Campbell
{"title":"氧化物等离子体处理系统中原位粒子监测系统的实现","authors":"G. Kong, C. Stager, A. C. Campbell","doi":"10.1109/ASMC.1995.484408","DOIUrl":null,"url":null,"abstract":"The implementation of an in-situ particle monitor (ISPM) on a high volume manufacturing oxide plasma etcher is discussed. Plasma process generated particles have been traditionally monitored using the Particle per Wafer Pass (PWP) methodology, using test wafers and a particle inspection system. As equipment throughputs continue to increase, more PWP test wafer runs are needed to maintain a quick response to sudden high particle events. Increasing the number of test wafer runs not only increases test wafer cost, but also reduces equipment availability and increases cost of ownership. The ISPM allows real-time response to high particle events, better understanding of equipment and process particulate status, reduced defectivity, increased tool availability, and reduced cost of ownership. An oxide plasma etching system was used in this investigation to collect a large data base of ISPM data. Strong correlation was established between regular PWP and ISPM data during RF-plasma on events. The ISPM was also demonstrated to provide valuable insights into the particle deposition mechanism. The initial particle counts were found to stay constant over a long duration of the equipment run time. However, when the PWP count started to increase, the ISPM signal increased sharply. Moreover, the frequency of high particle counts was observed to increase as the equipment run time increased. Finally, a process comparison based on the ISPM is discussed. Based on the correlation to PWP methodology, the increased data collection capability and potential reduction in cost of ownership, the ISPM has been implemented in the manufacturing line.","PeriodicalId":237741,"journal":{"name":"Proceedings of SEMI Advanced Semiconductor Manufacturing Conference and Workshop","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of an in-situ particle monitor system on an oxide plasma process system\",\"authors\":\"G. Kong, C. Stager, A. C. Campbell\",\"doi\":\"10.1109/ASMC.1995.484408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of an in-situ particle monitor (ISPM) on a high volume manufacturing oxide plasma etcher is discussed. Plasma process generated particles have been traditionally monitored using the Particle per Wafer Pass (PWP) methodology, using test wafers and a particle inspection system. As equipment throughputs continue to increase, more PWP test wafer runs are needed to maintain a quick response to sudden high particle events. Increasing the number of test wafer runs not only increases test wafer cost, but also reduces equipment availability and increases cost of ownership. The ISPM allows real-time response to high particle events, better understanding of equipment and process particulate status, reduced defectivity, increased tool availability, and reduced cost of ownership. An oxide plasma etching system was used in this investigation to collect a large data base of ISPM data. Strong correlation was established between regular PWP and ISPM data during RF-plasma on events. The ISPM was also demonstrated to provide valuable insights into the particle deposition mechanism. The initial particle counts were found to stay constant over a long duration of the equipment run time. However, when the PWP count started to increase, the ISPM signal increased sharply. Moreover, the frequency of high particle counts was observed to increase as the equipment run time increased. Finally, a process comparison based on the ISPM is discussed. Based on the correlation to PWP methodology, the increased data collection capability and potential reduction in cost of ownership, the ISPM has been implemented in the manufacturing line.\",\"PeriodicalId\":237741,\"journal\":{\"name\":\"Proceedings of SEMI Advanced Semiconductor Manufacturing Conference and Workshop\",\"volume\":\"183 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SEMI Advanced Semiconductor Manufacturing Conference and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.1995.484408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SEMI Advanced Semiconductor Manufacturing Conference and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.1995.484408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

讨论了在大批量生产的氧化等离子蚀刻机上实现原位粒子监测(ISPM)。传统上,等离子体过程产生的颗粒使用每晶圆通道颗粒(PWP)方法进行监测,使用测试晶圆和颗粒检测系统。随着设备吞吐量的不断增加,需要更多的PWP测试晶圆运行来保持对突然的高颗粒事件的快速响应。增加测试晶圆运行次数不仅会增加测试晶圆成本,还会降低设备可用性并增加拥有成本。ISPM可以实时响应高颗粒事件,更好地了解设备和工艺颗粒状态,减少缺陷,提高工具可用性,降低拥有成本。本研究采用氧化物等离子体刻蚀系统,收集了大量的等离子体刻蚀数据。在rf等离子体事件期间,常规PWP和ISPM数据之间建立了很强的相关性。ISPM也被证明为颗粒沉积机制提供了有价值的见解。发现初始颗粒计数在设备运行时间的长时间内保持不变。然而,当PWP计数开始增加时,ISPM信号急剧增加。此外,观察到高颗粒计数的频率随着设备运行时间的增加而增加。最后,讨论了基于ISPM的过程比较。基于与PWP方法的相关性,增加的数据收集能力和潜在的拥有成本降低,ISPM已在生产线上实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of an in-situ particle monitor system on an oxide plasma process system
The implementation of an in-situ particle monitor (ISPM) on a high volume manufacturing oxide plasma etcher is discussed. Plasma process generated particles have been traditionally monitored using the Particle per Wafer Pass (PWP) methodology, using test wafers and a particle inspection system. As equipment throughputs continue to increase, more PWP test wafer runs are needed to maintain a quick response to sudden high particle events. Increasing the number of test wafer runs not only increases test wafer cost, but also reduces equipment availability and increases cost of ownership. The ISPM allows real-time response to high particle events, better understanding of equipment and process particulate status, reduced defectivity, increased tool availability, and reduced cost of ownership. An oxide plasma etching system was used in this investigation to collect a large data base of ISPM data. Strong correlation was established between regular PWP and ISPM data during RF-plasma on events. The ISPM was also demonstrated to provide valuable insights into the particle deposition mechanism. The initial particle counts were found to stay constant over a long duration of the equipment run time. However, when the PWP count started to increase, the ISPM signal increased sharply. Moreover, the frequency of high particle counts was observed to increase as the equipment run time increased. Finally, a process comparison based on the ISPM is discussed. Based on the correlation to PWP methodology, the increased data collection capability and potential reduction in cost of ownership, the ISPM has been implemented in the manufacturing line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automation and statistical process control of a single wafer etcher in a manufacturing environment Equipment management system (EMS) Reconvergent specular detection of material defects on silicon Managing multi-chamber tool productivity Advanced dielectric etching with a high density plasma tool: issues and challenges in manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1