N. Sugii, T. Iwamatsu, Y. Yamamoto, H. Makiyama, H. Shinohara, H. Oda, S. Kamohara, Y. Yamaguchi, K. Ishibashi, T. Mizutani, T. Hiramoto
{"title":"Vmin=0.4 V的lsi是真正的薄埋氧化硅(SOTB) -如何与“perpetual - mobile”微控制器与SOTB的应用?","authors":"N. Sugii, T. Iwamatsu, Y. Yamamoto, H. Makiyama, H. Shinohara, H. Oda, S. Kamohara, Y. Yamaguchi, K. Ishibashi, T. Mizutani, T. Hiramoto","doi":"10.1109/S3S.2013.6716576","DOIUrl":null,"url":null,"abstract":"Ultralow-voltage (ULV) CMOS will be a core building block of highly energy efficient electronics. Although the near- or sub-Vth operation is effective in reducing energy per operation of CMOS circuits, its slow operation speed can miss a chance to be used in many applications. The silicon-on-thin-buried-oxide (SOTB) CMOS is a strong candidate for the ul-tralow-power (ULP) electronics because of its small variability and back-bias control. This paper describes our results on the ULV operation of SRAM and ring oscillator (RO) circuits and shows the operation speed is now sufficiently high for many ULP applications. The “Perpetuum-Mobile” micro-controllers operating at ~0.4 V are expected to be implemented in many applications such as the internet of things.","PeriodicalId":219932,"journal":{"name":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vmin=0.4 V LSIs are the real with silicon-on-thin-buried-oxide (SOTB) — How is the application with \\\"Perpetuum-Mobile\\\" micro-controller with SOTB?\",\"authors\":\"N. Sugii, T. Iwamatsu, Y. Yamamoto, H. Makiyama, H. Shinohara, H. Oda, S. Kamohara, Y. Yamaguchi, K. Ishibashi, T. Mizutani, T. Hiramoto\",\"doi\":\"10.1109/S3S.2013.6716576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultralow-voltage (ULV) CMOS will be a core building block of highly energy efficient electronics. Although the near- or sub-Vth operation is effective in reducing energy per operation of CMOS circuits, its slow operation speed can miss a chance to be used in many applications. The silicon-on-thin-buried-oxide (SOTB) CMOS is a strong candidate for the ul-tralow-power (ULP) electronics because of its small variability and back-bias control. This paper describes our results on the ULV operation of SRAM and ring oscillator (RO) circuits and shows the operation speed is now sufficiently high for many ULP applications. The “Perpetuum-Mobile” micro-controllers operating at ~0.4 V are expected to be implemented in many applications such as the internet of things.\",\"PeriodicalId\":219932,\"journal\":{\"name\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2013.6716576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2013.6716576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vmin=0.4 V LSIs are the real with silicon-on-thin-buried-oxide (SOTB) — How is the application with "Perpetuum-Mobile" micro-controller with SOTB?
Ultralow-voltage (ULV) CMOS will be a core building block of highly energy efficient electronics. Although the near- or sub-Vth operation is effective in reducing energy per operation of CMOS circuits, its slow operation speed can miss a chance to be used in many applications. The silicon-on-thin-buried-oxide (SOTB) CMOS is a strong candidate for the ul-tralow-power (ULP) electronics because of its small variability and back-bias control. This paper describes our results on the ULV operation of SRAM and ring oscillator (RO) circuits and shows the operation speed is now sufficiently high for many ULP applications. The “Perpetuum-Mobile” micro-controllers operating at ~0.4 V are expected to be implemented in many applications such as the internet of things.