嵌入式处理器核上计算单元的混合在线自检体系结构

A. Floridia, Gianmarco Mongano, D. Piumatti, E. Sánchez
{"title":"嵌入式处理器核上计算单元的混合在线自检体系结构","authors":"A. Floridia, Gianmarco Mongano, D. Piumatti, E. Sánchez","doi":"10.1109/DDECS.2019.8724647","DOIUrl":null,"url":null,"abstract":"Safety-critical applications require to reach high fault coverage figures for on-line testing in order to be compliant with currently used functional safety standards. Nowadays, for meeting these constraints different solutions are adopted by semiconductor manufactures. Such approaches may vary from pure hardware-based mechanisms to software-based ones. Each of these possible solutions presents several advantages and drawbacks, typically: software approaches are less intrusive and have the advantage of reduced test application time compared to hardware ones. Conversely, hardware approaches yield high defect coverage but they are normally invasive and have longer test application time. The aim of this paper is to present a novel Design for Test infrastructure, accessible via software, for enabling a high fault coverage on-line test of arithmetic units within embedded processor cores. The end-goal is to overcome limitations of both hardware- and software-based test approaches, while striving for a low invasive on-line test. Such architecture was implemented on an open source processor, the OpenRISC 1200 and its effectiveness evaluated by means of exhaustive fault injection campaigns.","PeriodicalId":197053,"journal":{"name":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid on-line self-test architecture for computational units on embedded processor cores\",\"authors\":\"A. Floridia, Gianmarco Mongano, D. Piumatti, E. Sánchez\",\"doi\":\"10.1109/DDECS.2019.8724647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety-critical applications require to reach high fault coverage figures for on-line testing in order to be compliant with currently used functional safety standards. Nowadays, for meeting these constraints different solutions are adopted by semiconductor manufactures. Such approaches may vary from pure hardware-based mechanisms to software-based ones. Each of these possible solutions presents several advantages and drawbacks, typically: software approaches are less intrusive and have the advantage of reduced test application time compared to hardware ones. Conversely, hardware approaches yield high defect coverage but they are normally invasive and have longer test application time. The aim of this paper is to present a novel Design for Test infrastructure, accessible via software, for enabling a high fault coverage on-line test of arithmetic units within embedded processor cores. The end-goal is to overcome limitations of both hardware- and software-based test approaches, while striving for a low invasive on-line test. Such architecture was implemented on an open source processor, the OpenRISC 1200 and its effectiveness evaluated by means of exhaustive fault injection campaigns.\",\"PeriodicalId\":197053,\"journal\":{\"name\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2019.8724647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2019.8724647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了符合当前使用的功能安全标准,安全关键应用需要达到在线测试的高故障覆盖率。如今,为了满足这些限制,半导体制造商采用了不同的解决方案。这些方法可能从纯基于硬件的机制到基于软件的机制各不相同。这些可能的解决方案中的每一个都有一些优点和缺点,典型的是:与硬件方法相比,软件方法侵入性较小,并且具有减少测试应用程序时间的优点。相反,硬件方法产生高缺陷覆盖率,但它们通常是侵入性的,并且具有较长的测试应用时间。本文的目的是提出一种新的测试基础设施设计,可通过软件访问,用于实现嵌入式处理器内核内算术单元的高故障覆盖率在线测试。最终目标是克服基于硬件和基于软件的测试方法的局限性,同时努力实现低侵入性在线测试。这种架构是在开源处理器OpenRISC 1200上实现的,并通过详尽的故障注入活动来评估其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid on-line self-test architecture for computational units on embedded processor cores
Safety-critical applications require to reach high fault coverage figures for on-line testing in order to be compliant with currently used functional safety standards. Nowadays, for meeting these constraints different solutions are adopted by semiconductor manufactures. Such approaches may vary from pure hardware-based mechanisms to software-based ones. Each of these possible solutions presents several advantages and drawbacks, typically: software approaches are less intrusive and have the advantage of reduced test application time compared to hardware ones. Conversely, hardware approaches yield high defect coverage but they are normally invasive and have longer test application time. The aim of this paper is to present a novel Design for Test infrastructure, accessible via software, for enabling a high fault coverage on-line test of arithmetic units within embedded processor cores. The end-goal is to overcome limitations of both hardware- and software-based test approaches, while striving for a low invasive on-line test. Such architecture was implemented on an open source processor, the OpenRISC 1200 and its effectiveness evaluated by means of exhaustive fault injection campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New categories of Safe Faults in a processor-based Embedded System Effective Screening of Automotive SoCs by Combining Burn-In and System Level Test Fault-Aware Performance Assessment Approach for Embedded Networks On the in-field test of the GPGPU scheduler memory Radiation- and Temperature-Induced Fault Modeling and Simulation in BiCMOS LSI’s Components using RAD-THERM TCAD Subsystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1