求解有界直径最小生成树问题的新启发式混合遗传算法

Huynh Thi Thanh Binh, R. McKay, N. X. Hoai, N. D. Nghia
{"title":"求解有界直径最小生成树问题的新启发式混合遗传算法","authors":"Huynh Thi Thanh Binh, R. McKay, N. X. Hoai, N. D. Nghia","doi":"10.1145/1569901.1569953","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new heuristic, called Center-Based Recursive Clustering - CBRC, for solving the bounded diameter minimum spanning tree (BDMST) problem. Our proposed hybrid genetic algorithm [12] is also extended to include the new heuristic and a multi-parent crossover operator. We test the new heuristic and genetic algorithm on two sets of benchmark problem instances for the Euclidean and Non-Euclidean cases. Experimental results show the effectiveness of the proposed heuristic and genetic algorithm.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"New heuristic and hybrid genetic algorithm for solving the bounded diameter minimum spanning tree problem\",\"authors\":\"Huynh Thi Thanh Binh, R. McKay, N. X. Hoai, N. D. Nghia\",\"doi\":\"10.1145/1569901.1569953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new heuristic, called Center-Based Recursive Clustering - CBRC, for solving the bounded diameter minimum spanning tree (BDMST) problem. Our proposed hybrid genetic algorithm [12] is also extended to include the new heuristic and a multi-parent crossover operator. We test the new heuristic and genetic algorithm on two sets of benchmark problem instances for the Euclidean and Non-Euclidean cases. Experimental results show the effectiveness of the proposed heuristic and genetic algorithm.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种新的启发式算法——基于中心的递归聚类算法(CBRC)来解决有界直径最小生成树问题。我们提出的混合遗传算法[12]也被扩展到包括新的启发式和多父交叉算子。我们在两组基准问题实例上对新的启发式和遗传算法进行了欧几里得和非欧几里得的测试。实验结果表明了启发式和遗传算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New heuristic and hybrid genetic algorithm for solving the bounded diameter minimum spanning tree problem
In this paper, we propose a new heuristic, called Center-Based Recursive Clustering - CBRC, for solving the bounded diameter minimum spanning tree (BDMST) problem. Our proposed hybrid genetic algorithm [12] is also extended to include the new heuristic and a multi-parent crossover operator. We test the new heuristic and genetic algorithm on two sets of benchmark problem instances for the Euclidean and Non-Euclidean cases. Experimental results show the effectiveness of the proposed heuristic and genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metaheuristics for graph bisection Bayesian network structure learning using cooperative coevolution Session details: Track 10: genetic programming Simulating human grandmasters: evolution and coevolution of evaluation functions An evolutionary approach to feature function generation in application to biomedical image patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1