F-NIDS -基于联邦学习的分散入侵检测系统

J. A. Oliveira, R. I. Meneguette, V. P. Gonçalves, Rafael T. de Sousa Jr., Daniel L. Guidoni, J. Oliveira, Geraldo P. Rocha Filho
{"title":"F-NIDS -基于联邦学习的分散入侵检测系统","authors":"J. A. Oliveira, R. I. Meneguette, V. P. Gonçalves, Rafael T. de Sousa Jr., Daniel L. Guidoni, J. Oliveira, Geraldo P. Rocha Filho","doi":"10.5753/sbrc.2023.426","DOIUrl":null,"url":null,"abstract":"O advento das redes de IoT introduziu novos desafios de escalabilidade e segurança devido ao grande número de conexões e maior taxa de transferência de dados nessas redes. Embora tenha havido esforços nos últimos anos para mitigar esses efeitos, ainda há perguntas a serem investigadas, como privacidade de dados e escalabilidade em cenários de IoT distribuídos. Este trabalho propõe que o F-NIDS é um detector de intrusão que usa a inteligência artificial federada e técnicas de privacidade diferencial, combinadas com a comunicação assíncrona entre entidades do sistema, visando escalabilidade e confidencialidade dos dados. O F-NIDS possui uma proposta de arquitetura para permitir o uso em ambientes de IoT em nuvem ou em fog. Os resultados mostraram que: o modelo de detecção confidencial do F-NIDS apresenta métricas satisfatórias de desempenho e, no caso de um ataque, prever e determinar satisfatoriamente a sua natureza.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"F-NIDS – Sistema de Detecção de Intrusão descentralizado com base em Aprendizado Federado\",\"authors\":\"J. A. Oliveira, R. I. Meneguette, V. P. Gonçalves, Rafael T. de Sousa Jr., Daniel L. Guidoni, J. Oliveira, Geraldo P. Rocha Filho\",\"doi\":\"10.5753/sbrc.2023.426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O advento das redes de IoT introduziu novos desafios de escalabilidade e segurança devido ao grande número de conexões e maior taxa de transferência de dados nessas redes. Embora tenha havido esforços nos últimos anos para mitigar esses efeitos, ainda há perguntas a serem investigadas, como privacidade de dados e escalabilidade em cenários de IoT distribuídos. Este trabalho propõe que o F-NIDS é um detector de intrusão que usa a inteligência artificial federada e técnicas de privacidade diferencial, combinadas com a comunicação assíncrona entre entidades do sistema, visando escalabilidade e confidencialidade dos dados. O F-NIDS possui uma proposta de arquitetura para permitir o uso em ambientes de IoT em nuvem ou em fog. Os resultados mostraram que: o modelo de detecção confidencial do F-NIDS apresenta métricas satisfatórias de desempenho e, no caso de um ataque, prever e determinar satisfatoriamente a sua natureza.\",\"PeriodicalId\":254689,\"journal\":{\"name\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbrc.2023.426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网网络的出现带来了新的可扩展性和安全性挑战,因为这些网络中有大量的连接和更高的数据传输速率。尽管近年来一直在努力减轻这些影响,但仍有一些问题需要研究,如分布式物联网场景中的数据隐私和可扩展性。这项工作提出F-NIDS是一种入侵检测器,它使用联合人工智能和差异隐私技术,结合系统实体之间的异步通信,以实现数据的可扩展性和保密性。F-NIDS有一个架构建议,允许在云或雾中的物联网环境中使用。结果表明:F-NIDS机密检测模型具有令人满意的性能指标,在攻击的情况下,预测和确定其性质令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F-NIDS – Sistema de Detecção de Intrusão descentralizado com base em Aprendizado Federado
O advento das redes de IoT introduziu novos desafios de escalabilidade e segurança devido ao grande número de conexões e maior taxa de transferência de dados nessas redes. Embora tenha havido esforços nos últimos anos para mitigar esses efeitos, ainda há perguntas a serem investigadas, como privacidade de dados e escalabilidade em cenários de IoT distribuídos. Este trabalho propõe que o F-NIDS é um detector de intrusão que usa a inteligência artificial federada e técnicas de privacidade diferencial, combinadas com a comunicação assíncrona entre entidades do sistema, visando escalabilidade e confidencialidade dos dados. O F-NIDS possui uma proposta de arquitetura para permitir o uso em ambientes de IoT em nuvem ou em fog. Os resultados mostraram que: o modelo de detecção confidencial do F-NIDS apresenta métricas satisfatórias de desempenho e, no caso de um ataque, prever e determinar satisfatoriamente a sua natureza.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telemetria Adaptativa Usando Aprendizado por Reforço Profundo em Redes Definidas por Software Heurística Escalável Para o Problema de Alocação de vBBU e Comprimento de Onda em Cloud-Fog RAN Autoencoders Assimétricos para a Compressão de Dados IoT Caracterização das vulnerabilidades dos roteadores Wi-Fi no mercado brasileiro Gaming On The Edge: Uma arquitetura de computação na borda para jogos em dispositivos móveis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1