利用深度学习方法的集成来识别猴痘疾病

Sedat Örenç, Emrullah Acar, M. S. Özerdem
{"title":"利用深度学习方法的集成来识别猴痘疾病","authors":"Sedat Örenç, Emrullah Acar, M. S. Özerdem","doi":"10.24012/dumf.1199679","DOIUrl":null,"url":null,"abstract":"Recently, the monkeypox disease spreads to many countries rapidly and it becomes a serious health problem. In addition, this disease affects the quality of a person's life. Therefore, it is crucial to decrease the spread rate with the quick determination of the disease. In order to identify monkeypox rapidly, deep learning models are used. They are named EfficientNetB3, ResNet50, and InceptionV3 respectively. According to the results of the three models, ResNet50 is the best model when they compare aspects of performance. The accuracy of ResNet50 sets %94.00. There are four parameters that are used to evaluate the performance of the models. There are called precision, recall, f1-score, and support. These models demonstrate that monkeypox can be classified with high precision. Therefore these models can be used for the future of the work.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Utilizing the Ensemble of Deep Learning Approaches to Identify Monkeypox Disease\",\"authors\":\"Sedat Örenç, Emrullah Acar, M. S. Özerdem\",\"doi\":\"10.24012/dumf.1199679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the monkeypox disease spreads to many countries rapidly and it becomes a serious health problem. In addition, this disease affects the quality of a person's life. Therefore, it is crucial to decrease the spread rate with the quick determination of the disease. In order to identify monkeypox rapidly, deep learning models are used. They are named EfficientNetB3, ResNet50, and InceptionV3 respectively. According to the results of the three models, ResNet50 is the best model when they compare aspects of performance. The accuracy of ResNet50 sets %94.00. There are four parameters that are used to evaluate the performance of the models. There are called precision, recall, f1-score, and support. These models demonstrate that monkeypox can be classified with high precision. Therefore these models can be used for the future of the work.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1199679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1199679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,猴痘病在许多国家迅速蔓延,成为严重的卫生问题。此外,这种疾病会影响一个人的生活质量。因此,在快速诊断疾病的同时,降低传播速度是至关重要的。为了快速识别猴痘,我们使用了深度学习模型。它们分别被命名为EfficientNetB3、ResNet50和InceptionV3。根据三个模型的结果,ResNet50是比较性能方面的最佳模型。ResNet50的准确度为%94.00。有四个参数用于评估模型的性能。它们分别是精确度、召回率、f1-score和支持度。这些模型表明,猴痘可以进行高精度的分类。因此,这些模型可以用于未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing the Ensemble of Deep Learning Approaches to Identify Monkeypox Disease
Recently, the monkeypox disease spreads to many countries rapidly and it becomes a serious health problem. In addition, this disease affects the quality of a person's life. Therefore, it is crucial to decrease the spread rate with the quick determination of the disease. In order to identify monkeypox rapidly, deep learning models are used. They are named EfficientNetB3, ResNet50, and InceptionV3 respectively. According to the results of the three models, ResNet50 is the best model when they compare aspects of performance. The accuracy of ResNet50 sets %94.00. There are four parameters that are used to evaluate the performance of the models. There are called precision, recall, f1-score, and support. These models demonstrate that monkeypox can be classified with high precision. Therefore these models can be used for the future of the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1