聚苯胺/ZnO纳米复合材料:一种去除水溶液中铬(VI)的新型吸附剂

R. Ahmad
{"title":"聚苯胺/ZnO纳米复合材料:一种去除水溶液中铬(VI)的新型吸附剂","authors":"R. Ahmad","doi":"10.5772/INTECHOPEN.85868","DOIUrl":null,"url":null,"abstract":"In recent years with the rapid economic globalization, pollution by industries and agriculture has increased, which results in decrease in the quality of ground and surface water. Pollution by heavy metals has become a serious health issue world-wide due to their nonbiodegradable and persistent nature. Therefore, extensive research has been done to develop ecofriendly and effective methods for removal of heavy metals, such as chemical precipitation, ion exchange, electrodialysis, membrane filtration, and adsorption. Among these methods, adsorption is the most recognized technique for wastewater treatment due to high-removal efficiency and ease in operation without yielding harmful by-products. Recently, nanocomposites based on biopolymer-grafted synthetic adsorbent have been used in various industrial applications including wastewater treatment. Therefore, the present chapter will be devoted for the removal of toxic heavy metals from wastewater by using bionanocomposite.","PeriodicalId":210842,"journal":{"name":"Advances in Composite Materials Development","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Polyaniline/ZnO Nanocomposite: A Novel Adsorbent for the Removal of Cr(VI) from Aqueous Solution\",\"authors\":\"R. Ahmad\",\"doi\":\"10.5772/INTECHOPEN.85868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years with the rapid economic globalization, pollution by industries and agriculture has increased, which results in decrease in the quality of ground and surface water. Pollution by heavy metals has become a serious health issue world-wide due to their nonbiodegradable and persistent nature. Therefore, extensive research has been done to develop ecofriendly and effective methods for removal of heavy metals, such as chemical precipitation, ion exchange, electrodialysis, membrane filtration, and adsorption. Among these methods, adsorption is the most recognized technique for wastewater treatment due to high-removal efficiency and ease in operation without yielding harmful by-products. Recently, nanocomposites based on biopolymer-grafted synthetic adsorbent have been used in various industrial applications including wastewater treatment. Therefore, the present chapter will be devoted for the removal of toxic heavy metals from wastewater by using bionanocomposite.\",\"PeriodicalId\":210842,\"journal\":{\"name\":\"Advances in Composite Materials Development\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Composite Materials Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.85868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Composite Materials Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

近年来,随着经济全球化的快速发展,工农业污染日益严重,导致地下水和地表水质量下降。由于重金属的不可生物降解性和持久性,其污染已成为世界范围内严重的健康问题。因此,人们对化学沉淀法、离子交换法、电渗析法、膜过滤法和吸附法等环保有效的重金属去除方法进行了广泛的研究。其中,吸附法具有去除效率高、操作简单、不产生有害副产物等优点,是目前公认的污水处理技术。近年来,基于生物聚合物接枝合成吸附剂的纳米复合材料已广泛应用于废水处理等工业领域。因此,本章将致力于利用生物纳米复合材料去除废水中的有毒重金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyaniline/ZnO Nanocomposite: A Novel Adsorbent for the Removal of Cr(VI) from Aqueous Solution
In recent years with the rapid economic globalization, pollution by industries and agriculture has increased, which results in decrease in the quality of ground and surface water. Pollution by heavy metals has become a serious health issue world-wide due to their nonbiodegradable and persistent nature. Therefore, extensive research has been done to develop ecofriendly and effective methods for removal of heavy metals, such as chemical precipitation, ion exchange, electrodialysis, membrane filtration, and adsorption. Among these methods, adsorption is the most recognized technique for wastewater treatment due to high-removal efficiency and ease in operation without yielding harmful by-products. Recently, nanocomposites based on biopolymer-grafted synthetic adsorbent have been used in various industrial applications including wastewater treatment. Therefore, the present chapter will be devoted for the removal of toxic heavy metals from wastewater by using bionanocomposite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polyaniline/ZnO Nanocomposite: A Novel Adsorbent for the Removal of Cr(VI) from Aqueous Solution CERMETS for Use in Nuclear Thermal Propulsion A Short Review on Al MMC with Reinforcement Addition Effect on Their Mechanical and Wear Behaviour An Alternative Framework for Developing Material Models for Finite-Strain Elastoplasticity Using of Magnetron Sputtering for Biocompatible Composites Creating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1