IEEE UV 2022“视觉遇上藻类”目标检测挑战的多模型融合解决方案

Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng
{"title":"IEEE UV 2022“视觉遇上藻类”目标检测挑战的多模型融合解决方案","authors":"Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng","doi":"10.1109/UV56588.2022.10185512","DOIUrl":null,"url":null,"abstract":"This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"458 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-model Fusion Solution for IEEE UV 2022 “Vision Meets Algae” Object Detection Challenge\",\"authors\":\"Xiaoxiao Peng, Yueyi Wang, Dayu Chen, Yuchen Tian, Keyu Huang, Jianfeng Zheng\",\"doi\":\"10.1109/UV56588.2022.10185512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"458 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本报告总结了IEEE UV ' 2022举办的“视觉与藻类相遇”目标检测挑战赛的第四名解决方案,重点是通过显微镜获得的海洋生物图像中的目标检测。首先,我们对大量的骨干和颈部进行实验,通过增强模型结构来改进mAP。然后,我们从数据的角度设计并测试了多种基于藻类特征的数据增强方案。最后,在多个模型集成的情况下,我们的方法在测试集上的mAP达到了57.579%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-model Fusion Solution for IEEE UV 2022 “Vision Meets Algae” Object Detection Challenge
This report summarizes the fourth-place solution of the “Vision Meets Algae” object detection challenge held on IEEE UV’2022 focuses on object detection in marine biology images obtained through the microscope. First, we experimented with a large number of backbones and necks to improve mAP by enhancing the model structure. Then, we designed and tested a variety of data augmentation schemes based on algal characteristics from a data perspective. Finally, with multiple models ensembled adopted, our methods achieve 57.579% mAP on the test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1